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El objetivo principal de este trabajo es el de recopilar conocimiento sobre la base de los fundamentos biológicos 
de la experiencia emocional y sobre la posibilidad de mejora del bienestar emocional a través del aumento del 
tono vagal. El tono vagal es considerado un indicador de la experiencia emocional. Y la experiencia emocional es 
concebida como un proceso dinámico donde interaccionan la propia reacción emocional y la capacidad de regular la 
reacción emocional. Mediante las intervenciones en biorretroalimentación de la variabilidad de la frecuencia cardíaca 
centradas en la respiración y mediante la neuroestimulación transauricular del nervio vago es posible aumentar el 
tono vagal de forma que se mejora el estado emocional.

The main objective of this study is to present knowledge on the biological underpinnings of emotional experience and 
on the possibility of improving emotional well-being by increasing vagal tone. Vagal tone is considered an indicator 
of emotional experience. An emotional experience is conceived as a dynamic process in which an emotional reaction 
and the ability to regulate the emotional reaction interact. Through heart rate variability biofeedback interventions 
focusing on breathing and through transauricular vagus nerve stimulation, it is possible to increase the vagal tone in 
a way that improves the emotional state.
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The importance of this work lies in the importance of the 
emotional experience for survival (Darwin, 1872; LeDoux, 2012) 
and for the adequate psychosocial development of human beings 
(Borges & Naugle, 2017; Pleeging et al., 2019). When the emotional 
experience is deficient or when it is not adequate to the situational 
demand, it becomes a problem for adaptation (Aldao et al., 2010; 
Colombo et al., 2020). The emotional experience takes place in the 
very organism of the person who experiences it (Blair & Diamond, 
2008; Raz et al., 2016). For this reason, we consider that, together 
with the knowledge of the characteristics of the process of emotional 
experience, it is essential to understand its biological foundations 
in order to facilitate resources for the improvement of the emotional 
state based on its foundations.

The Emotional Experience

The emotional experience is the dynamic result of the 
interaction between the emotional reaction and emotional 
regulation (Ochsner et al., 2012; Ochsner & Gross, 2014). In the 
Process Model of Emotion Regulation, hereafter PMER- (Gross, 
2015) and based on the World-Perception-Perception-Valuation-
Action (hereafter, W-PVA) framework of Ochsner & Gross 
(2014), the activation of the emotional experience occurs in a 
certain world (W) with the activation of perception (P). In this 
initial perception stage, sensory inputs are encoded for their 
valuation to take place (V). Valuations are made by an overlapping 
set of brain systems. And three types of valuations are 
differentiated located on the cognitive processing continuum. At 
the most basic level, there are basic valuations which represent 
relatively direct associations between perceptions and the valence 
given to them. At the intermediate level, contextual valuations 
refer to evaluations about stimulus-response relationships that are 
made based on three categories of information: the subject's 
history, the social context, and the subject's motivations. Finally, 
at the most complex cognitive level, there are conceptual 
valuations, which represent abstract valuations about different 
stimuli and realities. And at the level of activated valuation, 
emotion is generated. In turn, on any level of valuation (V) the 
action (A) is activated, which can be either mental (for example, 
a memory) or belonging to the organism (for example, an increase 
in heart rate). The actions generated have consequences on the 
surrounding reality, on the world (W). In turn, the changes 
generated in the world (W), will again affect the P, and this again 
affects the V, which will also affect the A again. Emotional 
experience occurs longitudinally over time on the basis of the 
aforementioned interdependencies. And the W-PVA cycle will 
cease when the emotional experience ends (Figure 1).

Also in PMER theory (Gross, 2015), the emotional experience 
is defined as the processual result of the interaction between the 
emotional reaction and emotional regulation. The emotional 
reaction is automatic (Behnke et al., 2022), whereas emotional 
regulation is conscious and refers to the efforts we subjects make 
to change our own emotions (Gross & Thompson, 2007). Adequate 
emotional regulation allows us to regulate our own emotional 
reactions in order to also be able to manage our own discomfort 
(Goldin et al., 2019; Uccula et al., 2020). In PMER theory, 
emotional regulation is composed of three stages: identification, 
selection, and implementation. Identification corresponds to the 

stage in which the subject who is experiencing the emotional ‘to the 
W-PVA cycle, the perception phase (P) corresponds to detecting the 
experience of emotion; the valuation phase (V) corresponds to 
evaluating whether the emotional reaction being experienced is 
sufficiently positive or negative to activate regulation; and the 
regulation itself occurs in the action phase (A).

Biological Foundations of Emotional Experience

Based on neuroimaging findings, Etkin et al. (2015) have 
distinguished different neuroanatomical areas related to the processes 
of emotional response and emotional regulation. Thus, in relation to 
experiences of emotional reaction, the areas involved are as follows: 
on the one hand, the subcortical system composed of the amygdala, 
the ventral striatum, and the periaqueductal gray matter; and, on the 
other hand, a set of cortical regions including the anterior insula and 
the anterior dorsal cingulate (Beissner, et al., 2013; Costafreda et al., 
2008; Etkin et al., 2015). The variety of information encoding that 
occurs in these structures explains, in part, the cognitive, subjective, 
motor, and physiological multidimensionality of emotional 
experience. Each structure processes information at different levels. 
For example, the central regions of the limbic system—such as the 
amygdala, ventral striatum, and periaqueductal gray matter—process 
simple motivational features of a stimulus, such as the threat we feel 
from a large spider; and the cortical regions, such as the insula, 
provide additional interoceptive information.

From an evolutionary point of view, the brain areas characteristic 
of prototypical adult emotional experience are the result of 
evolutionary development (Decety et al., 2011; Diamond, 2002; 

Figure 1.
Perception-Valuation-Action Framework (PVA)

Panel A: The world (W) provides information to the perception (P). The valuations (V) 
that are made result in different actions (A) which can alter the situation of the world 
(W).
Panel B: the process occurs over time (Adapted from Ochsner & Gross. 2014).



Emotional Experience and its Biological Underpinnings: Improving Emotional Well-Being Through Vagal Tone

97

Michalska et al., 2013; Thomas et al., 2017). In such development 
the human brain presents a prolonged heterogeneous maturation, 
whose development follows a rostral caudal direction, a prior 
development from phylogenetically older structures towards more 
recent ones directed from areas of low neuronal expansion towards 
those of high expansion. Thus, certain areas of the cerebral cortex, 
being characteristic of the areas of long expansion and 
phylogenetically more recent, are the ones that present a more 
prolonged development as occurs with the prefrontal cortex 
(Aubert-Broche et al., 2013) whose interneurons are the last 
neurons to mature (Lagercrantz, 2016). Thus, from an evolutionary 
perspective, the early postnatal years are an exceptionally dynamic 
and critical period of structural, functional, and connectivity 
development of the human brain (Haartsen et al., 2016; Li et al., 
2019). Over approximately the first two decades, the process of 
synaptogenesis will widen the cortical columns and through the 
process of myelination the processing speed of multiple brain areas 
will be enhanced (Dehaene-Lambertz & Spelke, 2015). It has also 
been observed how the amygdala, together with the posterior part 
of the insular cortex, exerts a strong influence on emotional 
processing in childhood, the consequence of which is that children 
tend to experience emotional reactions more intensely than in 
adulthood (Casey et al., 2005; Silvers et al., 2016, 2017).

Vagal Tone: an Indicator of Emotional Experience

Having differentiated emotional reaction and emotional 
regulation both as autonomous (and interdependent) processes and 
as processes located in different brain areas which develop 
throughout the evolutionary development, we will now focus on the 
vagal tone indicator.

Porges (1992) defined cardiac vagal tone as a physiological 
measure of stress, and he equated high vagal tone with high heart 
rate variability (hereafter HRV) and an experience of homeostasis 
with positive emotional valence; conversely, low vagal tone implies 
low HRV and a stressful experience with negative emotional 
valence (Porges, 2022). HRV is also defined as the average time 
between heartbeats (Task Force, 1996).

In polyvagal theory (Porges, 2007, 2009) it is considered that 
the origin of emotional reactions is found in the automatic and non-
conscious perception that the autonomic nervous system performs 
based on perceived safety, risk, or extreme risk. Based on this 
theory, the autonomic nervous system is hierarchically organized 
on the configuration of the vagus nerve. The vagus nerve has 
multiple innervations and connections to much of the organism 
(Berthoud & Neuhuber, 2000; Neuhuber & Berthoud, 2021). And 
structurally the vagus nerve is composed of the ventro-vagal branch 
and the dorso-vagal branch; the dorso-vagal branch has no myelin 
and is phylogenetically the oldest; while the ventro-vagal branch 
has myelin and is phylogenetically the most recent (Gourine et al., 
2016, Porges, 1995). Both complexes together with the sympathetic-
adrenal axis, characteristic of the sympathetic nervous system, 
make up the three neurobiological circuits of the autonomic nervous 
system (Porges, 2022).

The ventro-vagal complex (VVC) or myelinated vagus is 
activated when the organism perceives security. Its center is located 
in the nucleus ambiguus (NA) and its innervations are directed to 
supradiaphragmatic areas. From the ventral area of the NA, it 

exchanges information with the nucleus of the solitary tract (NST), 
with some cranial nerves and with the sinoatrial node of the heart. 
The NST establishes connections with the hypothalamus, the limbic 
system, the periaqueductal gray matter, the amygdala, and different 
parts of the cortex (Berthoud & Neuhuber, 2000). In relation to the 
cranial nerves in the NA there are also several innervations of the 
glossopharyngeal nerve and the facial nerve. As a result of the 
automatic activation of the ventro-vagal complex, the face and 
voice show prosocial patterns such as, for example, a smile and a 
pleasant tone of voice (Porges, 2004). And in relation to the 
sinoatrial node, at the cardiac level the myelinated vagus is an 
inhibitor of the sympathetic system, which functions as a brake 
enabling a rapid slowing of the heart rate and an increase in HRV 
(Porges, 1995). Thus, the emotional reaction generated in the 
organism is characteristic of a state of well-being.

When the organism automatically detects risk, the influence of 
the ventral vagus disappears, and the sympathetic-adrenal system 
is activated. The sympathetic-adrenal system is part of the 
sympathetic nervous system and is considered an adaptive 
mobilization system that supports fight-flight behaviors; this, 
together with the perception of risk, is associated with a withdrawal 
of the parasympathetic influence of the ventro-vagal complex 
(Porges, 2004, 2022). Thus, when the organism processes risk, the 
parasympathetic influence of the heart is deactivated, and the 
sympathetic-adrenal system is activated. The sympathetic influence 
on heart rate is mediated by the release of epinephrine and 
norepinephrine (Kim et al., 2018). The beta-adrenergic receptors 
are activated upon the release of these hormones resulting in 
cAMP-mediated membrane protein phosphorylation (Brown et al., 
1979). Thus, in the absence of the influence of the ventral vagus on 
the sinoatrial node and as a consequence of activation of the 
sympathetic-adrenal system, heart rate increases and HRV 
decreases. And although the blood-brain barrier prevents 
epinephrine from acting on cognitive functions (Weil-Malherbe, 
1959), beta-adrenergic receptors in the vagus nerve allow the 
reuptake of norepinephrine in the brain (Chen & Williams, 2012; 
Noble et al., 2019), supporting the experience of stress more solidly 
and thus the functioning of cognitive functions is subordinated to 
amygdalar functioning (Arnsten et al., 2015). The emotional 
reaction generated is typical of a state of emotional distress.

Finally, when extreme risk is detected, the dorsal-vagal complex 
(DVC) or unmyelinated vagus is activated, which mainly innervates 
subdiaphragmatic areas. The neurobehavioral functions of this 
complex are immobilization or passive adaptations that include 
apparent death and loss of consciousness (Porges, 2007). Thus, the 
emotional reaction generated will be related to the characteristics 
of emotional shock.

The validity of the heart rate and HRV indicator is based on the 
fact that ventral vagal efferents are cardioinhibitory and synapse in 
the sinoatrial node of the heart (Goggins et al., 2022). When 
myelinated ventral vagal fibers of the NA are activated through 
their parasympathetic influence on the sinoatrial node, they reduce 
heart rate by increasing the time between heartbeats, increasing the 
HRV as an indicator of high vagal tone. However, when risk is 
detected, the parasympathetic influence of the vagus ventral to the 
sinoatrial node disappears, producing an increase in heart rate, a 
reduction in vagal tone and HRV. The activation of the sympathetic-
adrenal complex generates stressful emotional experiences 
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characteristic of low vagal tone (Porges, 1995, 2022). This is why 
HRV is also considered a biomarker of stress with which it 
maintains an inverse relationship: the higher the HRV level the 
lower the stress, and the lower the HRV the more the stress 
(Balzarotti et al., 2017; Goessl et al., 2017).

Regarding the experience of the emotional reaction and its 
evolutionary development, given that our starting assumption is 
that the genesis of every emotional reaction is related to the 
experiences of security, risk, and extreme risk (Porges, 1995, 2022), 
we should mention that from the moment of birth the human being 
possesses the adequate functionality of the neurobiological circuits 
of the ventro-vagal complex, the sympathetic-adrenal axis, and the 
dorsal-vagal complex. However, given that the brain is immersed 
in its evolutionary development process, the different brain areas 
mentioned in the postulates of polyvagal theory do not possess 
throughout childhood and adolescence the sufficient maturity 
required for their adequate performance. Nevertheless, the 
connection from the ambiguous nucleus of the vagus nerve to the 
sinoatrial node of the heart is fully developed, so we can consider 
that the validity of the HRV is justified. Thus, throughout the 
ontogenetic development, with the exception of pathological states, 
a reduction in HRV will imply the experience of emotional realities 
characteristic of the fight-flight system of the sympathetic 
autonomic nervous system, while an increase in HRV will make 
possible the experience of emotional realities close to the state of 
well-being and security characteristic of the activation of the 
myelinated vagus nuclei of the NA (Porges, 2022).

Based on this knowledge, two types of interventions aimed at 
increasing HRV in order to provide emotional well-being will be 
described below.

Interventions to Increase Vagal Tone

Biofeedback is a widely used method to train and educate people 
in the skills of voluntary control of some physiological functions, 
such as breathing, which consists of providing users with 
instantaneous information on the variations that occur in their own 
physiological activity (Schwartz & Andrasik, 2003).

Thus, through HRV biofeedback programs and by practicing 
relaxed breathing subjects learn to breathe in a way that increases 
HRV (Kiselev et al., 2016). In this regard, it has been observed that 
a breathing-focused HRV biofeedback teaches people to breathe at a 
rate of approximately six breaths per minute (Karavaev et al., 2013).

HRV biofeedback can be performed by fitting a person with a 
device that connects to a computer and provides real-time feedback 
on their HRV. By observing the impact of breathing on HRV in real 
time, they learn to breathe—through trial and error and feedback—
thus improving their HRV values.

Various HRV biofeedback interventions focused on breathing 
have increased the values of participating HRV subjects in both 
adult (Aritzeta et al., 2017; Goessl et al., 2017; Lantyerm et 
al.,2013) and child populations (Aranberri Ruiz, et al., 2022; 
Aritzeta et al., 2022; Jones et al., 2019; Rush et al., 2017).

As an emerging neuromodulation therapy, transcutaneous 
auricular vagus nerve stimulation (hereafter taVNS) has been shown 
to be safe and effective for major depressive disorders, insomnia, and 
anxiety (Wang et al., 2022). This procedure is now CE marked 
(European Community Conformity Mark) for depression and anxiety 

(Farmer et al., 2020). And in January 2022 the United States of Food 
and Drug Administration (FDA) granted ElectroCore's noninvasive 
vagus nerve stimulator (nVNS) designation as an innovative device 
for treating post-traumatic stress disorder (PTSD).

The mechanism of action of this procedure is as follows: the 
external ear is the only site to which the vagus nerve sends its 
peripheral branch, the auricular vagus nerve (Trevizol et al., 2015; 
Goggins et al., 2022). From the auricular pathway of the nerve the 
fibers project to the nucleus of the solitary tract (NST) (Farmer et 
al., 2020). Neuronal anatomy has shown that the auricular branch 
of the vagus nerve projects to the NST which in turn is connected 
to other brain regions, such as the locus coeruleus, parabrachial 
nucleus, hypothalamus, thalamus, amygdala, hippocampus, anterior 
cingulate cortex, anterior insula, and lateral prefrontal cortex 
(Beekwilder & Beems, 2010). The NST is the source nucleus for 
all vagal afferents and its stimulation affects both lower motor 
neurons in the brainstem and upper motor neurons in the cerebral 
cortex (Komisaruk et al., 2022; Porges, 2007). Within the medulla, 
the NST projects directly to the dorsal motor nucleus (DMN) of the 
vagus nerve and to the nucleus ambiguus (NA), from where 
preganglionic parasympathetic efferents to visceral organs originate 
(Frangos et al., 2015). In turn, from the NST, signals will be sent to 
the ventrolateral caudal nuclei of the medulla, which will send 
information to the ventrolateral rostral nuclei, which through the 
intermediolateral cell columns reduce sympathetic influence (Butt 
et al., 2020). Thus, through parasympathetic influence on the heart 
with taVNS, HR will be reduced and HRV will be increased.

Although in one intervention the relationship between HRV and 
taVNS has been questioned (Wolf et al., 2021), in different 
investigations a robust relationship between taVNS and increased 
HRV is observed (Antonino et al., 2017; Bretherton et al., 2019; 
Clancy et al., 2014; De Couck et al., 2017; Sclocco et al, 2019).

Conclusions

Both biofeedback interventions of HRV focused on breathing, 
as well as the taVNS through different mechanisms of action 
generate an increase in HRV in the organism, which implies an 
increase in vagal tone, typical of emotional states with positive 
valence related to states of security that generate experiences of 
emotional well-being (Porges, 2022).

The therapeutic potential of the two interventions is justified 
both by the knowledge of the biological bases addressed throughout 
this work, as well as by the understanding of the PMER Theory and 
W-PVA cycle mentioned above. By means of both procedures, 
actions (A) are generated in the organism that make possible an 
increase in HRV, generating in turn a safer world (W) where 
emotional experiences have greater emotional wellbeing.

On the one hand, by means of biofeedback of HRV, the subjects, 
infants (for the aforementioned reasons of evolutionary 
development, mainly from 7 years of age), adolescents, and adults 
learn to breathe at a rate of approximately 6 breaths per minute in 
such a way that this learning makes it possible to improve their 
emotional well-being. Thus, after the intervention, the subjects are 
able to breathe in a way that increases their own HRV and their own 
psychological well-being (Aranberri Ruiz et al., 2022; Aritzeta et 
al., 2022). Therefore, when such subjects are immersed in an 
emotional reality of low HRV, typical of states of emotional 
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discomfort, after identifying their own state of emotional discomfort, 
they will be able to select and implement the learned breathing 
pattern automatically to increase their own HRV values and thus 
approach a state of emotional well-being.

On the other hand, through taVNS, even though no emotional 
self-regulation procedure is taught to the subject, the professional 
trained in the use of taVNS provides the intervening subject with 
an increase in HRV, making a better emotional state possible. That 
is, this procedure, like the biofeedback mentioned above, affects 
the subject's world (W) through the actions (A) of increased vagal 
tone carried out, this time not by the subject him- or herself, but by 
the trained professional.
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