
ince its inception at the beginning of the 20th
century, factor analysis (FA) has undergone
considerable developments. The simple initial

model proposed by Spearman (1904) for validating his
theory of intelligence has given rise to an extensive family
of models for use not only in the social sciences but also
in other domains, such as Biology or Economics. Given
that a thorough treatment of FA would go well beyond the
possibilities of the present article, it makes sense to first of
all specify the aspects that we shall cover here. 
For many years now, the first author has been reviewing

empirical studies that use FA in psychological research,
and the experience acquired will help to make the initial
selection of issues on which to focus. First of all, most
factorial studies in psychology use FA to assess (a) the
structure of a test based on the scores on its items, or (b)
dimensional hypotheses using as measures the scores on
different tests. It seems reasonable, then, to focus this

exposition on this type of measure: scores on items or
tests.
Secondly, experience shows that the methodological

problems involved in such studies tend to be similar. A
first group of problems emerges at the design stage of the
research (a stage usually somewhat neglected in factorial
studies). The problems in the second group have to do
with the decisions the researcher must make at the stage
of parameter estimation and assessment of model-data fit
and at that of rotation. In particular, the majority of the
problems arise from the unjustified use of the package
known as “Little Jiffy”, which involves (a) Principal
component (b) eigenvalues-greater-than-one rule, and (c)
Varimax rotation. We shall devote particular attention to
design, parameter estimation and assessment of model-
data fit issues.
Even with such delimitations, the issue remains too

broad. In the present article we shall concentrate on the
most basic general model of FA: the linear model, based
on correlations, and which analyzes measures obtained
in a single group of participants and on a single occasion.
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This limitation means leaving out topics of great interest:
extended models of means and covariances, non-linear
models and their relations with item response theory, and
models for multiple groups and multiple occasions. Nor,
indeed, shall we be able to deal with the general issue of
factor scores.
The article’s approach is conceptual and applied, and

we have attempted as far as possible to avoid formal
expressions and technical detail. Only the basic equations
of the model are included, and these are presented in
separate boxes. Likewise, we have tried to minimize the
use of references, at the same time offering a section on
recommended reading. In this regard, we should stress
that some of the topics discussed are controversial, and
that the recommendations we make in the article reflect
our own theoretical positions. The recommended reading
section gives readers the opportunity to consider other
positions and to critically evaluate what we have set out
here.

THE BASIC IDEAS OF FACTOR ANALYSIS
FA is a statistical model that represents the relations
among a set of variables. It is based on the assumption
that these relations can be explained from a series of non-
observable (latent) variables called factors, the number of
factors being substantially smaller than the number of
variables. The model is obtained directly as an extension
of some of the basic ideas of linear regression and partial
correlation models. Linear regression provides the basic
FA equations, whereas partial correlation theory provides
the key ideas for assessing model-data fit.
In the linear regression model, the score on a criterion

variable can be explained in part by  a linear
combination (a sum of variables, each one of which is
multiplied by a weight or coefficient) of a series of
predictor or explanatory variables called regressors. It is
explicitly assumed that the combination is no more than
an approximation, and that a part of the criterion score
will not be predictable or explainable from the regressors.
This unexplained part is the error term (see eq. 1 in the
box).

In FA a set of observable variables (items, subtests or
tests) is analyzed, each one of which can be considered
as a criterion. If this conceptualization is used, FA would
consist in a system of regression equations such as that
described above (one equation for each observable
variable) in which the regressors, here called factors, are
common for a subset (common factors) or the whole set
(general factors) of variables (see eq. 2 in the box). For
each one of these equations, the basic difference between
FA and a conventional regression is that the regressors,
that is, the factors, are not observable. This difference is
what makes FA a more complex model than that of
regression. For a start, since the factors are unobservable,
they lack a particular measurement scale. To solve this,
the simplest practice, which we shall employ here, consists
of assuming that the factors are on a standard scale: with
zero mean and unit variance. If, in addition, the
observable variables are also standardized, the model is
mathematically simpler and easier to interpret.
By analogy with the regression model, it follows that the

simplest FA model is that which proposes a single general
factor (eq. 3). This model would be equivalent to that of
simple regression, and was the initial FA model set out by
Spearman. In order to get started and clarify some ideas
we shall study a Spearman solution based on an FA of a
4-item set, together with its representation in a Wright
Diagram. As regards the drawing up of such diagrams,
we refer the reader to the article by Ruíz, Pardo and San
Martín in the present issue of this journal.

Represented graphically this would be:
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The FA equation for item 1 is:

, which is interpreted as follows. The score of individual
i on item 1 is partly determined by the effect of the
common factor (the level of i in the common factor f) and
is partly error. In FA the error term includes all those
effects other than the common factor or factors that
influence the score on the observed variable. More
systematically, we can distinguish three broad groups of
effects or types of error: (a) sampling error (statistical
error), (b) measurement error (psychometric error) and (c)
error of approximation. This last error component means
that the specified model is not considered exactly correct
even in the population. Indeed, models are not, nor
pretend to be, exact: they are, at best, reasonable
approximations to reality.
The value 0.6 is the factorial weight, and is equivalent to

the slope in the regression model. If item and factor scores
are on a standard scale, this weight reflects the
importance of the factor in the determination of the score
on this item. The greater the weight, the greater the
importance of the factor, and therefore, the less the
influence of the error. Moreover, on the assumed
standard scale, this weight can be interpreted as the
correlation between the factor and the item. Its square,
which is the coefficient of determination, is interpreted as
the proportion of variance in the scores for this item that
can be explained from the factor. Thus, in accordance
with our estimated solution, item 1 would correlate 0.6
with the general factor; this factor would explain 36% of
the variance in the scores for this item (0.62=0.36), so
that the remaining 64% would be error variance. In the
terminology of FA, the proportion of explained variance
is referred to as “communality”.
Before continuing, it may be an interesting exercise for

the reader to interpret the FA equation corresponding to
another item, say, item 2. Likewise, it is very important to
take into account that the above interpretations are only
valid if the variables and the factor are on a standard
scale. Should this not be the case, the weight does not
have a clear interpretation, since it would reflect to a
greater or lesser extent the differences in the measurement
scale of the variables. When interpreting the output of an
FA it is essential to ensure that the solution interpreted is
a standardized solution.

When more than one factor is hypothesized we have the
multiple FA model, also known as Thurstone’s (1947)
model, after its principal developer. The model is the same
for any number of factors and, for simplicity’s sake, we
shall explain it with two. The key aspect here is the
hypothesized relation between the factors. As in
regression, the simplest and most easily interpretable case
is that in which the factors are uncorrelated (conceptually,
they are independent of one another). A solution of this
type is called an “orthogonal solution”. In an orthogonal
solution the factorial weights continue to be interpreted as
variable-factor correlations, their squares are proportions
of variance explained by the corresponding factor, and
the sum of these squares is the communality (see eqs. 4
and 5), or the proportion of variance explained jointly by
the factors

The case of correlated factors, called ‘oblique solution’ is
the most complex, but also perhaps the most realistic in
practice. The most important aspect on interpreting a
solution of this nature is that now the weights and the
variable-factor correlations are different coefficients. As in
the theory of linear regression, the factorial weights are
now standardized regression coefficients and measure the
effect of the factor on the response variable when the
other factors remain constant. These weights are
presented in the matrix called “factor pattern”. On the
other hand, the variable-factor correlations are called
structural coefficients, and are presented in the matrix
called “factor structure”. The equations corresponding to
the weights and structural coefficients are presented in the
box below. Conceptually, the weights indicate the extent
to which the factor influences the variable, whilst the
structural coefficients indicate the degree of similarity
between factor and variable. In the case of oblique
solutions, we shall focus above all on the weights, that is,
the pattern matrix.
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In equation (8) sj1 is the structural coefficient (variable-
factor correlation) and ø is the correlation between
factors. 
Let us look now at an example of a multiple orthogonal

solution with 6 items and two factors:

The graphical representation is:

Wright Diagram for two uncorrelated common factors.

Taking as an example item 2, we obtain the following
equation:

This equation indicates that individual i’s score on item 2
is determined not only by the error but also, and primarily,
by the second factor (0.85), and to a lesser extent by the
first factor (0.31). In this case, the communality or
explained variance is obtained by adding the squares of
the weights on both factors, so that for item 2,

Subtracting the communality from one we obtain an
error variance of 0.18. In terms of proportions, the two
factors jointly explain 82% of the total variance
(communality), and the remaining 18% would be error.
The reader might also find it interesting to make an
interpretation of another item, such as item 5.
Below we show an oblique solution (factor pattern)

obtained with the same data. The estimated correlation
between factors was 0.40. Compared to the orthogonal
solution it can be seen that it is clearer and simpler (the
smaller weights are now closer to zero). This is what is
generally observed on comparing the two types of
solution.

The corresponding diagram would now be:

Wright Diagram for two uncorrelated common factors.

In this example we shall work with item 4. Its basic
equation takes the same form as in the orthogonal case:

However, its interpretation is different, since the weights
(effect of the factor on the variable) and the variable-
factor correlations are different measures. Thus, the
weight corresponding to the first factor is 0.78. However,
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the correlation between the variable and this factor, that
is, the structural coefficient, should be obtained as:

Readers who wish to practice might like to make the
calculations corresponding to item 1. 
Let us now move on to the contributions of the partial

correlation model. The basic equation is shown in the
following box for the Spearman model, and is based on
the previous results discussed above.

Equation (11) indicates that, if the model is correct, the
partial correlation between any pair of variables after
eliminating the influence of the general factor from both is
zero. The numerator of the partial correlation is the
difference between the correlation observed between the
two variables and the correlation reproduced from the
model, and is referred to as the residual correlation. Thus,
if the model is correct, the observed correlation and the
reproduced correlation are equal, and the residual is
zero. Conceptually, the interpretation of this result is that
the only thing the variables have in common is the general
factor they measure, so that on eliminating this common
cause there is no longer anything that links them. The
multiple case is more complex, but the essential idea is the
same. If the model is correct, and the variables have only
m factors in common, then the partial correlation between
any pair of variables after eliminating the influence of
these common factors should be zero. More than a result,
this is an essential principle. It suggests that the most direct
way to assess whether the FA model is appropriate should
be based on the assessment of the residuals after fitting a
model with the proposed number of factors.
In general, most of the characteristics of the model

considered up to now are dictated by the principle of
parsimony (Carroll, 1978). According to the parsimony
principle, the equations of the model should be linear,
and thus the simplest possible. This principle also
recommends making a clear distinction between common
variance (communality) and error variance. Finally, this
same principle suggests that the number of common
factors should be considerably less than that of variables.
There would be nothing to be gained, indeed, by
interpreting a solution with as many factors as variables.

The determination of the correct number of factors (small
enough to be clearly interpretable and large enough to
account for the relations between variables) is perhaps the
most important decision in FA (Thurstone, 1947).

EXPLORATORY FACTOR ANALYSIS AND
CONFIRMATORY FACTOR ANALYSIS
In the literature (e.g., Mulaik, 1972) a very sharp
distinction is drawn between two types of factor analysis:
exploratory factor analysis (EFA) and confirmatory factor
analysis (CFA). In our opinion, this distinction is not as
clear as is presented in the texts; moreover, it raises a
series of problems. First, in the EFA-CFA distinction, two
concepts are mixed: (a) the purpose of the analysis and
(b) the model that is tested. And second, in both (a) and
(b), EFA and CFA are not two qualitatively distinct
categories, but rather the two poles of a continuum.
As traditionally understood, in a purely exploratory

analysis the researcher would analyze a set of data
without having any previous hypothesis about its
structure, and would leave it to the results of the analysis
to provide information about it. On the other hand, in a
CFA, the researcher would have drawn up a series of
well-specified hypotheses that will be tested by assessing
the fit of the model to the data. These hypotheses would
be of three types: (a) number of factors, (b) pattern of
relations between variables and factors, and (c) relations
between the factors.
In initial attempts to assess a new phenomenon, a purely

exploratory position such as that described above would
be defensible. However, it does not seem to be so
appropriate in the case of analyzing a test that we have
developed or adapted ourselves. In this case, it is
reasonable to suppose that we shall have a series of
previous hypotheses about the number of dimensions the
test is intended to measure, which items are to measure
each dimension, and whether those dimensions are
independent or not according to the theory. In most cases,
however, these hypotheses are not sufficiently strong to
allow a full CFA model to be specified. Thus, with regard
to the purpose, it is useful to consider that the majority of
psychometric applications of FA are to be found at some
intermediate point.
As regards the type of model tested, the distinctions refer

here to the degree of restriction in the solution proposed.
In an EFA the restrictions imposed are the minimum ones
required for obtaining an initial solution – a solution that
can subsequently be transformed. In a CFA the restrictions
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are much stronger, and only allow the testing of a single
solution, which cannot be transformed later on. The
purpose of the analysis and the type of model tested are
not independent concepts. The more previous information
we have and the stronger the hypotheses, the more
specific will be the solution tested and the greater the
number of restrictions imposed on that solution.
Nevertheless, even accepting this clear relationship, the
distinction between restricted FA and unrestricted FA
seems to us more appropriate than that of EFA and CFA
to refer to the type of model tested.
In a CFA, as normally used, the restrictions concerning

the number of common factors and the relations between
them are similar to those involved in an EFA. In general,
the correlations between factors are freely estimated. The
main differences concern the restrictions imposed on the
factorial pattern. The solution almost always proposed is
one called “independent clusters” (McDonald, 1985),
which follows the simple structure principle. In this
solution, each variable has a non-null weight in a single
common factor, the weight in the remaining factors being
zero. A solution of this type is presented below:

where the asterisk indicates that the corresponding
weight is estimated as a free parameter. In this
hypothetical solution, the first three items would be pure
measures of the second factor and would have null
weights in the first. On the other hand, the last three items
would be pure measures of the first factor. Solutions of this
type are theoretically ideal. They have the maximum
possible structural simplicity, and allow the content of
each factor to be interpreted without ambiguities.
Let us look now, in contrast, at an exploratory solution

obtained from the analysis of these 6 items. It was
obtained from an EFA in which two common factors were
proposed. The initial arbitrary solution was transformed
into an oblique solution, since, in theory the two factors
were considered to be related. It is the pattern we
presented previously

It is indeed quite clear, and the fit to the two-factor
model was good. It seems fairly evident that the first three
items mainly measure f2 and the last three f1. However,
are these items “clean” enough to fit well with the previous
hypothetical solution?
If we assess the fit of the data to the hypothetical solution

presented above, that is, we fit a conventional CFA to
these items, what we are proposing is that each one of
them is a pure measure of a single factor, and therefore,
that the lower weights which appear in the EFA solution
are due only to sampling error and are, therefore,
compatible with values of exactly zero in the population.
The problem with this approach is that, in the real world,

the majority of items (and of tests) are not factorially pure
measures. With some effort and after a process of
selection it is possible to obtain some items that are
(almost) pure measures. Such items are called “markers”
or “indicators” in the language of FA. Nevertheless,
expecting all the items in a test to be markers seems to us
a somewhat unrealistic hypothesis.
If we accept the idea that in the majority of FAs many of

the items are factorially complex, we will have to conclude
that the structural hypothesis most common in a CFA is
false, and that, therefore, the model will not fit well. More
specifically, if the lower weights (those around or under
0.20) are low but not null, every time we fix one of them
at zero we commit an error of specification of the model.
If the model has few items, such as in the example, we can
perhaps still attain an acceptable fit. However, in larger
models, the accumulation of errors will necessarily lead to
unacceptable goodness-of-fit values. This reasoning
explains two results that give cause for considerable
concern in the applied field (e.g., McCrae, et al. 1996).
The first is that factorial structures obtained by means of
EFA that are clear, interpretable and replicable across
different studies show inadmissible goodness-of-fit values
when assessed by means of CFA. The second is that it is
easier to obtain a poor fit when analyzing questionnaires
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of realistic size than when analyzing very small groups of
items. The first result may lead to lack of confidence in FA
on the part of the researcher; the second may lead to ill-
advised practices and to the unnecessary elimination of
items.
Our position can be summarized as follows. In the

analysis of items and tests, we believe that FA should be
guided by previous theory. This theory will allow the
proposal of hypotheses about the number of factors, the
(approximate) pattern we expect to find, and whether the
factors are related or not. Nevertheless, in general, prior
knowledge will not suffice to specify a confirmatory
model. What we propose is to use a non-restrictive
(exploratory) model, but with a confirmatory purpose as
far as possible. That is, to estimate a solution in which the
number of factors (or at least a range of values) is
specified, and also whether these factors are independent
or not. Moreover, we should have a more or less clear
idea of the nature of the transformed pattern that will be
obtained. Naturally, if the study is advanced enough to be
able to specify a restrictive solution, or all the items are
exceptionally simple, then CFA is the model to use.

DESIGN OF A STUDY BASED ON FACTOR ANALYSIS
As in any statistical analysis, for the results obtained
through FA to be valid, interpretable and generalizable,
some basic conditions must be fulfilled in the research
design. To clarify the importance of this point in our case,
it is useful to consider FA as an analysis at two levels. At
the first level the correlations between a series of
measures are calculated. At the second level the structure
of these correlations is analyzed. If the results are already
wrong at the first level, they can never be correct at the
second level. For reasons of clarity, we shall discuss
separately the two basic aspects in the design: sample
and variables.

SAMPLE
In any factorial study, and especially in those involving the
development or adaptation of a test, we should have a
relatively clear idea of the population of interest. Thus, FA
should be based on a representative sample of this
population. It is customary, however, to use samples of
convenience (usually university students). Apart from the
lack of representativeness of such samples, the most
substantial statistical problem here is that of attenuation
due to restriction of range. If the sample is highly
homogeneous as far as the variables to be analyzed are

concerned (i.e., if the scores on the items/tests have little
variability), then the correlations obtained at the first level
of FA will be attenuated. The correlation matrix will then
have much more “noise” than “signal”, and it will be
difficult to obtain a clear solution at the second level.
Perhaps the most widely discussed problem in FA in

relation to the sample is the stability of the solution (How
large a sample is needed for a solution to be stable and
generalizable?). This is a complex problem. The stability
of a factorial solution depends jointly on three factors: (a)
the sample size, (b) the degree of determination of the
factors, and (c) the communality of the variables. Thus, if
the factors are well determined and the variables have
little measurement error, stable solutions can be achieved
with relatively small samples. In this regard, we should
stress that traditional “recipes” of the type “10 times more
participants than variables” lack a solid basis.
The measures normally used in psychology – tests, and

above all, items – contain a great deal of intrinsic
measurement error. It must be accepted, then, that the
communalities will be generally low, and that therefore,
we should act primarily on points (a) and (b). With regard
to point (b), which is discussed in detail below, the idea of
determination of a factor refers to the number of variables
with high weights in that factor – i.e., the extent to which
the factor is well defined and clearly measured by a
substantial number of indicators. As regards point (a) it is
appropriate once more to think in terms of a “dual level”.
The results of the second-level analysis can only be stable
if the correlations on which they are based are themselves
stable (and it should be stressed that correlations have
high sampling fluctuations). It is therefore reasonable to
consider a sample of 200 observations as a minimum,
even in ideal circumstances (high communalities and well
determined factors).

VARIABLES
FA is a model for continuous and unlimited variables. But
neither item scores nor test scores have these qualities.
Therefore, in the majority of psychological applications,
FA should be seen as an approximate model whose
advantage lies in its simplicity. It is important, then, to first
of all discuss in which conditions the approach will be
sufficiently sound for what is required in practice.
FA generally works well in the analysis of scores on tests

and subtests. As for items, this approach also tends to be
acceptable when graded response scales (Likert) with 5 or
more categories are used. Finally, binary items and items
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with 3 options and a central category can cause more
problems. In principle we would recommend using the
graded response format wherever possible.
Whatever the type of response, whether or not FA works

well depends above all on the distribution of the scores.
Symmetrical distributions do not tend to give problems.
On the other hand, the most significant problems occur
when (a) the distributions are markedly asymmetrical,
and (b) the asymmetries are in both directions. An
example of this situation would be the analysis of a test
containing very easy items or very difficult items.
Asymmetries of opposite signs give rise to non-linear
relations, and therefore, to unsuitability of the linear FA
model (Ferrando, 2002). In relation to what was set out
above, the magnitude of the problem depends on the type
of variable to be analyzed. With test scores it is very
difficult for non-linear relations to occur. With Likert items
it is a problem to take into account. Finally, it is a very
common problem in binary items, and known as the
‘difficulty factors’ problem (McDonald & Alhawat, 1974).
Results obtained in simulation, together with actual

experience, lead us to the following recommendations. In
the case of tests and subtests, FA is nearly always
appropriate. In the case of graded response items, FA is
expected to work well if the asymmetry coefficients are all
in the interval between -1 and +1. Finally, even binary
items can be fitted well by the linear model if the difficulty
indices are in the range 0.4 to 0.6. When the variables
have more extreme distributions, it is generally necessary
to resort to non-linear approaches, which we are unable
to deal with here.
Apart from the scale and the distribution, there are other

factors to take into account as far as variables are
concerned, especially where individual items are
involved. As we have said, the reliability of the items is
intrinsically low. However, the analysis of items with
excessively low reliabilities should be avoided, since such
items will only add noise to the factorial solution. A
conventional pilot study assessing the discrimination
indices (item-total correlations) or the test-retest
correlations item by item is highly recommended. This
allows us to eliminate those items that contribute only
noise and to begin the FA from a cleaner input.
It is relatively common for typical performance

questionnaires (personality, motivation and attitudes) to
include redundant items – that is, those which are
essentially the same question put slightly differently. Such
items are used for assessing the consistency of the

participants or (in overlapping form) to increase the
internal consistency of the test. The presence of redundant
items always gives rise to problems in FA. In fact, the
errors between two redundant items cannot be
independent, since, even after eliminating the common
factors, the responses continue to be related due to the
similarity of the content. The consequence is the need to
extract additional factors defined principally by pairs or
“triplets” of redundant items. These factors may be difficult
to identify, particularly in rotated solutions. A prior
content analysis can eliminate redundancy and avoid
such problems from the outset.
Finally, we shall consider the degree of determination of

the factors. Where possible, a good recommendation is to
use markers or indicators. As we have already said,
markers are, theoretically, pure measures of a factor. In
more applied terms, Cattell (1988) defines them as
variables which, in previous studies, have shown
themselves to be good measures of the factors under
assessment. Their use has two main functions: (a) it allows
us to identify the factors by increasing their degree of
determinacy, and (b) it permits us to relate the results of
the study to those of previous work. Cattell (1988)
recommends using a minimum of two markers per factor.
As regards the relationship between the number of items

and the number of factors, as we know, the more items
there are that accurately measure a factor, the more well-
determined that factor will be, and the more stable the
solution. Although divergent recommendations can be
found (Cattell, 1988), our opinion is that the best designs
in FA are those in which few factors are posited, markers
are employed and a substantial number of items is
proposed for measuring each factor. Whether or not
markers are used, in order to identify a factor clearly it is
necessary to have a minimum of 4 variables with
substantial weights on that factor.

STAGES OF A FACTOR ANALYSIS
Preliminary analyses: adequacy of the data
In accordance with the dual-level approach, it would appear
logical, before undertaking an FA, to use indicators for
assessing whether the correlations obtained at the first level
are appropriate for factorial analysis at the second level.
These indicators are usually referred to as “sampling
adequacy measures”, and their use is highly important as a
preliminary stage of FA: it will indicate whether the FA is or
is not the appropriate model for the data. However, this is
the stage that is most neglected in applied research.
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To begin with, it is advantageous to inspect the descriptive
statistics of the variables, in accordance with what was
discussed in the previous section. Next, Bartlett’s (1950)
sphericity test should be carried out. This constitutes a test of
the null hypothesis that the population correlation matrix is
identity – that is, that the variables are uncorrelated in the
population. If this hypothesis cannot be rejected, we must
accept that the correlation matrix contains only “noise”. It is
important to take into account that, all the same, if this matrix
is analyzed, factors will be obtained. However, such factors
will be totally spurious. In this regard, it is useful to consider
the Bartlett test as a security measure and a necessary
condition. In most FAs the null hypothesis will be rejected,
and thus it will be admitted that there is some relationship
between the variables. However, this may not be sufficient.
As we have seen, the FA model assumes, moreover, that the
relationship is substantial. If the relationship is so diffuse that
we need practically as many factors as variables to explain
it, then it is not worth carrying out the analysis.
Assuming that the necessary condition is fulfilled, in third

place the degree of joint relation between the variables
would be assessed. The most widely used measure is the
KMO (Kaiser, 1970), which assesses the degree to which
the scores in each of the variables can be predicted from the
others. The range of values of the KMO is 0 to 1, and the
higher the value, the more substantially related between one
another are the variables. As a value of reference, Kaiser
(1970) suggests that the correlation matrix will be
appropriate for factorization if the KMO is 0.80 or higher.

Estimation of the model
As mentioned earlier, this is the crucial stage of FA. It
involves the estimation of an initial solution and, above
all, determination of the dimensionality of the data, that
is, the most appropriate number of factors. The estimation
stage should be guided by the principle of parsimony. The
aim is to determine the simplest solution (i.e., with the
lowest number of factors) compatible with residuals
sufficiently close to zero.
The estimation procedure implemented by default in

statistical programs is usually principal components
analysis (PCA). PCA, however, is not a procedure for
estimating the factorial model. It is a method for reducing
the number of variables. In essence, FA is a model which
is based on the principle that the variables have
measurement error, which distinguishes clearly between
common variance (communality) and error variance, and
which sets out to reproduce only the common variance –

that which is involved in the correlations between
variables. PCA, on the other hand, does not make such a
distinction, considers only total variance and sets out to
reproduce the total variance.
Advocates of PCA argue that it is simpler, better defined

and produces virtually the same results as FA (e.g.,
Velicer, 1990). However, the last claim is only half true.
Theoretically, and from the point of view of FA, PCA could
be considered as the extreme case of the factorial model
in which all the variables for analysis are error-free (i.e.,
common variance and total variance coincide). In
practice, PCA and FA lead to similar results when: (a) the
number of variables to be analyzed is large (say, over 30)
and (b) the variables have little error, and therefore, high
communality (Mulaik, 1972). A basic principle in
psychometrics, however, is that test scores have
measurement error (and item scores have much more). It
does not seem very reasonable, then, to use a technique
not based on this principle.
The problem with using PCA when the correct model is

FA can be illustrated by a small simulation. A correlation
matrix was generated on the basis of the following “true”
factorial solution

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

Next, the correlation matrix was analyzed by means of
a proper factorial method and by means of PCA. The
direct factorial pattern (two factors being specified) was:

0.50 0.00

0.50 0.00

0.50 0.00

0.50 0.00

0.50 0.00

0.50 0.00

0.50 0.00

0.50 0.00

0.50 0.00

0.50 0.00
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which reproduces exactly the true solution. In contrast,
the PCA solution was:

0,57 0 -0,82 0 0 0 0 0 0 0

0,57 0,03 0,09 -0,1 -0,8 0,22 0,03 -0,02 -0,01 -0,02

0,57 -0,04 0,09 -0,6 0,01 -0,47 -0,12 0 -0,1 -0,04

0,57 0,4 0,09 0,24 0,01 -0,34 0,44 0 0 0,34

0,57 0,15 0,09 0,18 0,12 -0,02 0,13 -0,15 -0,06 -0,74

0,57 0,06 0,09 0,18 0,12 0,13 -0,33 0,33 -0,59 0,1

0,57 0,09 0,09 0,24 0,01 -0,14 -0,55 0 0,51 0,05

0,57 0,03 0,09 -0,3 0,23 0,41 0,24 0,45 0,32 0

0,57 -0,73 0,09 0,24 0,01 -0,14 0,19 0,01 0,01 0,05

0,57 0 0,09 -0,1 0,23 0,35 -0,02 -0,63 -0,06 0,24

which shows the two problems typical of PCA: upwardly
biased estimations of the weights in the content factor and
overestimation of the dimensionality. The first component
is a biased estimator of the only ‘real’ factor (whose ‘true’
weights are all 0.50). On the other hand, in the successive
components some of the variables have weights of over
0.20-0.30. In this regard it is important to note that, in
practice, it tends to be recommended to interpret only the
weights that are above these minimum values (Catell,
1988, McDonald, 1985). McDonald (1985) proposes a
more restrictive heuristic criterion according to which only
those factors with at least three variables with weights
over 0.30 would be interpreted. Even following this more
restrictive criterion, the results of the PCA solution would
lead to the interpretation of 4 components as if they were
true factors, while, in fact they reflect only error. If,
moreover, this solution had been rotated subsequently, it
would possibly have been totally erroneous.
Various methods are recommended for estimating the

FA model. For reasons of space, we shall discuss here
only the two most widely used: Ordinary Least Squares
(OLS) and Maximum Likelihood (ML). However, there are
other very interesting methods whose study we
recommend to the interested reader. Particularly worth
reviewing is minimum rank FA (Shapiro & ten Berge,
2002).
FA by OLS is not, strictly speaking, a method of

estimation, but rather a set of methods based on a
common general criterion. For the specified number of
factors, OLS estimators are those that minimize the sum of
the squared differences between the observed correlations
and those reproduced from the model. Conceptually,
then, OLS methods determine the solution that makes the
residuals as close to 0 as possible. This is, as we know,

the basic idea of fit in FA. Although the criterion is very
clear and direct, OLS methods are, in principle, purely
descriptive. As we shall see, however, this is not
necessarily a limitation.
The principal methods based on the OLS criterion are:

(a) principal axes FA, (b) Harman’s MINRES (Harman &
Jones, 1966), (c) Jöreskog’s (1977) ULS, and (d)
Comrey’s (1962) Minimal Residual. For the same number
of factors, the solutions obtained with any of them are
virtually identical. Nevertheless, we would especially
recommend the use of MINRES or ULS for two reasons: (a)
they do not require initial estimation of the communalities
and (b) they are more efficient in terms of computation.
In contrast to the OLS methods, the ML method (Lawley

& Maxwell, 1971) is statistical (inferential). Its main
advantage is that it permits the rigorous examination of
the model’s fit to the data through an index referring to
the chi-squared (χ2) distribution. This advantage,
however, should be put into context. First of all, the
inference in ML FA is based on the assumption that the
variables analyzed are continuous, metric and distributed
according to the normal multivariate law. In the case of
items and tests, this assumption is never met. Secondly, it
is assumed that the model proposed in m factors fits
perfectly in the population, so that all of the error is
sampling error (this is the null hypothesis of the goodness-
of-fit test). However, as we saw previously, models are
proposed only as reasonable approximations, and it is
accepted that part of the error will be error of
approximation. Thus, the method assesses a null
hypothesis that we know from the outset to be false, and
which will always be rejected as soon as there is sufficient
power. To make matters worse, the power is generally
very high, since FA normally involves working with large
samples. In sum, even with ‘reasonable’ distributions, the
use of ML FA based on the goodness-of-fit test will nearly
always lead to the need to estimate more factors than are
substantively interpretable. This phenomenon is called
“over-factorization”.
In spite of the problems referred to above, however,

there are reasons to recommend the use of ML FA. First of
all, and although it is not well known, the ML solution can
also be obtained without making inferential assumptions.
It is that which minimizes the partial correlations between
the variables after eliminating from them the influence of
the factors (Mulaik, 1972). Essentially, it is the same basic
criterion as that of FA by OLS. OLS methods minimize the
residual correlations. ML minimizes the partial
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correlations (the residual correlation is the numerator of
the partial correlation). For this reason, in practice, OLS
and ML solutions tend to be very similar. Secondly,
although the χ2 goodness-of-fit statistic evaluates a false
hypothesis, there are goodness of fit indicators derived
from this statistic that assess the error of approximation
and the model’s degree of fit. As we shall see in the
following section, these indicators are highly
recommended.
In a situation in which (a) the variables have acceptable

distributions, (b) the solution is well determined, and (c)
the model proposed is reasonably correct, the OLS and
ML solutions will be practically identical. In this case, the
use of ML has the advantage of permitting us to obtain
additional indicators that are very useful in the assessment
of fit. In the case of extreme distributions, weak or unclear
solutions and high error of approximation, the ML option
will give problems. The convergence of the method is
quite delicate, and may give rise to unacceptable
estimations. Moreover, the additional indicators will not
be reliable. In these cases the OLS methods are clearly
superior. According to simulation studies, they are highly
robust methods (they nearly always converge), and since
they do not make distinctions between error sources, they
tend to approximate the correct solution more effectively
than the ML method (MacCallum & Tucker 1991).

Assessment of fit
In order to decide whether a model with m factors is
appropriate, it is necessary to assess the model’s degree
of fit to the data. There are a variety of criteria and
procedures for performing this assessment. In our view,
some are considerably better than others.
Let us begin with the criteria and procedures we do not

recommend. Possibly the most widely used criterion in
Psychology, and that which commercial programs tend to
apply by default, is Kaiser’s criterion: the relevant number
of factors is the number of eigenvalues greater than 1 in
the original correlation matrix. This criterion presents
several problems, the first of these being the lack of a
clear justification. It has several (which we shall not see
here), but none of them convincing. The second problem
is that it is based on the logic of PCA, not on that of FA.
Indeed, the eigenvalues of the matrix without reduction
(with ones in the principal diagonal) are equivalent to the
proportions of total variance explained by the
corresponding principal components. However, as we
have seen, the variance of real interest in FA is the

common variance, not the total variance. Thirdly, the
number of factors determined by means of this rule is
related to the number of variables analyzed. In more
detail, if n variables are analyzed, Kaiser’s criterion will
indicate a number of factors ranging between n/5 and
n/3. Thus, with 30 variables, the criterion will indicate
between 6 and 10 factors. However, if we have designed
a scale of 30 items to measure a single dimension, the
expected number of factors is 1, not between 6 and 10.
The scree test (Cattell, 1988) is a widely used graphical

procedure. On a bivariate graph, points are plotted
whose coordinates are the eigenvalues of the original
correlation matrix (i.e., the proportions of total variance
explained) on the y axis and the number of components
on the x axis. In a typical solution, the graph linking the
points is a decreasing function, similar in form to a scree
slope. From a certain point onwards the function becomes
practically horizontal, and it is this point which, according
to Cattell, indicates the most appropriate number of
factors. The logic is that, from this number onwards, the
successive factors are trivial, and only explain residual
variance. Although the logic is more convincing than that
of Kaiser’s rule, there are, in our view, two problems with
the procedure. First, the decision is based on visual
inspection, and therefore has a strong element of
subjectivity. Secondly, it is based on the logic of PCA, and
fails to distinguish between common variance and error
variance. Even so, if instead of the eigenvalues of the
matrix without reduction (proportions of total variance),
those of the reduced matrix (i.e., the communalities) were
represented, then the test would be useful as an auxiliary
procedure.
Two criteria that are highly fashionable just now are

Velicer’s MAP (1976) and parallel analysis (PA; Horn,
1965). In our opinion they are useful as auxiliary criteria,
but are affected by the same basic problem as the
previous criteria based on the logic of PCA: they fail to
distinguish between common variance and error
variance.
In the MAP criterion, a PCA is carried out in sequential

form, and at each stage one calculates the root mean
square of the partial correlations resulting from
elimination of the corresponding component and the
previous ones. Although the residual correlations always
decrease as more components are estimated, the partial
correlations do not do so. In fact, the function relating the
root mean square of the partials with the number of
components tends to take the form of a U. The minimum
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of the function would indicate the number of components
to be retained.
Parallel analysis (PA) can be understood as a

combination of Kaiser’s criterion and the scree test. In its
most basic form, it consists in generating a random
correlation matrix based on data from the same
dimension as the empirical data (participants and
variables): theoretically, such a matrix should have all the
eigenvalues close to 1. The method consists in comparing
the eigenvalues of the empirical matrix with those of the
randomly-generated matrix. In graphical terms, the
comparison would be like a double scree test involving the
simultaneous representation of the curve corresponding to
the empirical data and that corresponding to the random
data. The former, as we know, would be expected to
show a strong fall followed by stabilization. The second
should show a much flatter tendency (in a very large
matrix it would be a horizontal straight line cutting the y
axis at 1). The point of intersection between the two curves
would indicate the number of factors to be retained.
Considered in this way, many of the same criticisms can
be levelled at PA as in the case of the scree test. However,
PA does have the advantage that the criterion for
determining the number of factors is much more objective.
Let us now move on to a discussion of the criteria and

procedures we consider most worthy of recommendation.
To begin with, we shall consider those of a general nature
that can be applied whatever the method of estimation.
Subsequently we shall discuss those specifically related to
ML FA.
As we already well know, if the number of factors

proposed is appropriate, then the residual correlations
between the variables after eliminating the influence of the
factors should all be practically zero. In accordance with
this principle, the clearest criteria for assessing the fit of a
model in m factors will be those most directly related to
the assessment of the residual correlations.
In small problems, visual inspection of the matrix of

residuals can already give a good idea of the degree of
fit. However, FA usually works with a substantial number
of variables, so that global inspection of the residual
matrix is impractical. In such a case, the information
should be condensed by means of descriptive statistics.
To begin with, it is useful to inspect the distribution of

frequencies of the residuals. If the number of factors
proposed is adequate, this distribution will be
symmetrical, approximately normal and centred around a
mean of zero. Asymmetrical, off-centre or very heavy-

tailed distributions indicate that there remains some
systematic covariation to explain, so that it is necessary to
estimate more factors.
The root mean square residual (RMSR) is a descriptive

measure that indicates the average magnitude of the
residual correlations. If their mean is zero, then the RMSR
coincides with the standard deviation of the residuals.
Harman (1976) proposes a value of reference of 0.05 or
less for considering that the model’s fit is acceptable. This
criterion is purely empirical, but generally functions well
in practice. More well-founded is the criterion initially
proposed by Kelley (1935). The standard error of a
correlation coefficient of zero in the population is
approximately 1/√N, where N is the sample size. This
would be, therefore, the value of reference. Thus, in a
sample of 300 participants, 1/√N=0.058. If the RMSR is
around this value, or is lower, we can interpret that the
residual values observed do not differ significantly from
zero, and therefore, that there are no longer any
systematic relations to be explained.
The gamma index or GFI initially proposed by Tanaka

and Huba (1985) is a goodness of fit measure normed
between 0 and 1 that can be used with the majority of
estimation procedures. It can be interpreted as a
multivariate determination coefficient that indicates the
proportion of covariation between the variables
explained by the model proposed. According to the
current criteria (see the article by Ruíz, Pardo and San
Martín in this issue), for a fit to be considered as good, the
GFI should be above 0.95.
Finally, we consider two indicators that are used in the

case of ML estimation. They are, therefore, inferential, but
here we recommend their use in accordance with
descriptive logic. The first of these is the TLI-NNFI
coefficient, initially proposed by Tucker and Lewis (1973),
precisely for the FA model. It is a relative index, and
measures the improvement in fit produced by the model
proposed with respect to the null model in 0 factors, in
relation to the improvement expected by a model with
good fit. Its values range between 0 and 1 (even though
it is not strictly normed), and Tucker and Lewis
recommend interpreting it as a reliability coefficient. In
this sense, and although the current criteria are more
rigorous (see Ruíz, Pardo and San Martín in this issue),
our opinion is that values above 0.85-0.90 would start to
be considered acceptable.
The RMSEA index (Steiger & Lind, 1980), very much in

vogue at the moment, estimates the error of
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approximation of the model proposed. More
specifically, it estimates the discrepancy there would be
between the populational correlation matrix and the
matrix reproduced by the model proposed, also in the
population. Conceptually, RMSEA is based on the
approach, discussed above, that models are only
approximations, and estimates the extent to which the
model tested is a reasonable approximation. RMSEA is
an index relative to the degrees of freedom (complexity)
of the model, and may therefore penalize less
parsimonious models. As a reference, values below
0.05 could be considered indicators of good fit, whilst
values between 0.05 and 0.08 would indicate
acceptable fit.
We conclude this section with three observations. First,

we do not recommend making a decision as important as
that of the appropriate number of factors based on a
single indicator or criterion. It is appropriate to use
multiple indicators that provide us with more information,
and therefore, with more elements for making a
judgement. Second, in real situations the process leading
to the determination of the number of factors is not as
linear as described here for didactic reasons. In fact,
having obtained the transformed solution we may find
that one or more factors are very weak, are poorly
identified, or reflect trivial content (e.g., they do not attain
the minimum of 3 variables with weights over 0.3,
mentioned previously). This result could lead to the
reconsideration of the number of factors and a further
inspection of the solution. And finally, in many cases the
previous theoretical information does not indicate a clear
number of factors, but is actually much less specific. It may
indicate a plausible range of factors or perhaps various
plausible alternative solutions. It is advantageous in this
case to examine the differences between the values of the
fit indicators corresponding to the different solutions
assessed.

Obtaining the transformed solution (rotation)
In unrestricted factor analysis, the standard initial
solution obtained by means of applying OLS or ML
methods is referred to as “canonical form”. For the
specified number of factors, this solution has the
property that the successive factors explain the
maximum possible amount of the common variance. In
some cases the canonical solution is directly
interpretable, and requires no subsequent
transformation. The clearest case is that in which a set of

items is analyzed under the hypothesis that they
measure a single dimension. Given that the first factor
explains the maximum possible amount of common
variance, if the set is essentially unidimensional, then the
factors that follow the first one must be residual. An
extreme example is the direct two-factor solution we
have used above to compare FA with PCA. It is a
canonical solution in which the first factor already
explains all the common variance, leaving nothing for
the second factor to explain. This group of variables
would therefore be perfectly unidimensional.
When we expect to find a multiple-factor solution,

however, the initial canonical solution is arbitrary. It must
then be transformed or rotated until a solution is obtained
that can be interpreted in accordance with the theory on
which the analysis is based.
The principal decision the researcher has to make at this

stage is whether to use oblique or orthogonal rotation.
This is a controversial issue. Authors who advocate
orthogonal solutions consider them simpler and easier to
interpret. Moreover, they believe they are also more
stable in replication studies. The statistical basis of this
argument is that if the factors are independent in the
population, they will not be exactly so in the samples, and
therefore, if oblique solutions are used, the correlations
between factors will reflect only sampling error. On the
other hand, authors who defend oblique solutions
consider that the majority of psychological constructs are
related, and that to specify uncorrelated factors is to
artificially impose an incorrect solution only because it is
simpler (e.g., Mulaik, 1972). In sum, it is theory that must
guide this decision.
The authors of the present work essentially espouse the

second view. However, we also believe it necessary to
take into account (as always in FA) the criterion of
parsimony. If the theory does not permit strong
hypotheses, it would seem reasonable to begin with an
oblique solution. If the correlations estimated between
factors are substantial, this is the solution to maintain.
However, if the correlations between factors are
consistently low (say, under 0.30 or 0.20), then a
second analysis may be made, specifying an orthogonal
solution. Should the two solutions be similar, it would be
preferable to provisionally accept the orthogonal
solution.
Once the general type of rotation has been decided, the

importance of the decision about the specific method to
employ will depend on the solidity of the design. If the
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variables are ‘clean’, markers are used and the factors
are well determined, then the different methods should
lead essentially to the same solution. It is not a bad
strategy to try out different methods and assess whether
they converge approximately in a common solution. In
complex, noisy and poorly determined solutions, the use
of different rotation methods can lead to highly disparate
solutions. This is not a problem of methods, but rather one
of design.
Analytical methods of orthogonal rotation are generally

‘quartic’, in the sense that they are based on the quartic
functions of the factorial weights (conceptually, variances
of the squares of the weights). There are two general
methods of this type (see, for example, Mulaik, 1972):
Quartimax and Varimax. Given the initial unrotated
pattern (variables x factors), Quartimax transformation is
that which maximizes the variance of the squares of the
weights by rows. In contrast, Varimax maximizes the
variance by columns. The Quartimax solution is therefore
compatible with a column of the pattern in which the
majority of the weights are high, and tends to give
solutions with a general factor. On the other hand,
Varimax tends to give multiple solutions in which there is
no dominant factor. There is, in fact, a third method,
Equamax, which combines the two criteria and therefore
leads to intermediate solutions. All three methods function
well, and the choice of one or another should perhaps be
guided by what is expected from the theory (whether or
not there is a general factor). Our positive consideration
of the methods (especially Varimax) is not incompatible
with the critique we make at the beginning of the article,
which refers to the indiscriminate use of Varimax by
default even when the theory clearly indicates that the
factors are related or when it is expected to find a general
factor.
Experience with the above methods based on simulation

studies suggests that they may lead to erroneous or
unstable results (especially Varimax) when a high
proportion of the variables to be analyzed are factorially
complex. As we stated above, this is not a problem of the
rotation method, but rather one of poor design. In order
to minimize the problem, weighted versions of the three
methods (Quartimax, Varimax and Equamax) have been
proposed in which greater weight is assigned to the items
initially assessed as the simplest.
Traditional analytical methods of oblique rotation are an

extension of orthogonal quartic methods, with the
additional problem of determining the degree of relation
(obliqueness) between the factors. In practice, by far the
most widely used method is Oblimin (see, for example,
Mulaik, 1972) whose criterion can be considered as a
combination of the Quartimax and Varimax criteria
extended to the oblique case. The Oblimin criterion
includes a parameter (delta, which can take values
between 0 and 1) that controls the maximization of the
simplicity by rows or by columns. Indirectly, the delta
parameter also controls the degree of obliqueness
permitted in the solution. Factorial programs use by
default the value delta=0, following Jennrich’s (1979)
recommendation. This value tends to lead to good
convergence and to a solution that is simple and
interpretable. On the other hand, in order to achieve this
simplicity, the resulting factors tend to be closely related to
one another. Browne (personal communication)
recommends using delta=0.5.
An interesting alternative to Oblimin would be certain

analytical methods that incorporate the idea of rotation
on a target matrix that is constructed analytically.
Essentially, the idea is as follows. First of all, from an
orthogonal solution, a hypothesis or target matrix is
constructed. This matrix is a modification of the
orthogonal solution which approaches as closely as
possible the simple structure criterion; thus, and
principally, the very low weights in the orthogonal
solution are hypothesized as zeros in the target matrix.
Secondly, the oblique transformed solution is determined
which most closely approximates to the target matrix. The
initial method that incorporated these ideas is Promax
(Hendrickson & White, 1964); Lorenzo-Seva (1999)
recently proposed a much more refined method called
Promin. With respect to the previous methods, Promin
incorporates improvements at all stages: initial orthogonal
solution, determination of the target matrix and
procedures and criteria for obtaining the best
approximation. It is, therefore, the most highly
recommended method within this family.

SOFTWARE: THE FACTOR PROGRAM1

Whilst it is true that EFA is a classic data analysis
technique, statistical research on analysis itself is
constantly progressing. Thus, recent years have seen the
publication in specialist journals of a range of advances
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related to the methods employed in EFA. However, the
authors of the most popular data analysis programs (it is
not necessary to mention names) do not appear to be
interested in implementing these new advances. For this
reason, university researchers have taken it upon
themselves to develop specific programs that incorporate
both classic methods and new contributions. An example
of such programs is Factor (Lorenzo-Seva & Ferrando,
2006). This is a program that is easy to use (based on the
typical Windows menus), and whose purpose is to fit the
EFA model.
Factor implements classic procedures and indices, as

well as some of the most recent methodological
contributions – including not only all of those discussed in
this article but also others of undoubted interest that
should be the object of future study for readers interested
in FA. Thus, for example, Factor makes it possible to work
with polychoric correlations when it is suspected that the
linear model might be inadequate. Good examples of the
methodology recently proposed that have been
implemented in Factor are: (1) Minimum Rank Factor
Analysis, which is the only factor-extraction procedure
that permits assessment of the proportion of variance
explained by each factor; and (2) the Simplimax rotation
method, which has shown itself to be the most efficient
rotation method of all those proposed up to now. Many of
these methods are not available in any commercial
program.
Finally, it should be stressed that Factor is a program

distributed free of charge (i.e., free software). It can be
obtained in Internet at: http://psico.fcep.urv.es/
utilitats/factor/. The same page offers a brief user’s
manual, as well as a demonstration version. To date,
since being made available in 2006, it has been used by
a wide range of researchers in 29 international articles
published in ISL journals.

ILLUSTRATIVE EXAMPLE
Below, we propose a practical exercise for the reader to
apply the material presented. The data can be found at
the following address: http://psico.fcep.urv.cat/
ejemplopapeles. The 14-item test measures two types of
anxiety, and the general aim is that, by using the Factor
program, the reader carries out the factor analysis of the
test to determine its structure and properties. The solution
corresponding to the example can also be found there,
though we recommend that the reader works on the
example before reading the solution.

RECOMMENDED READING
- (Manuals of a general nature). Those by Harman

(1976) and Mulaik (1972), both in the list of refer-
ences, deal in quite in-depth fashion with the principal
aspects of FA, including those we have not been able
to cover here. Their technical level is considerably
higher than that of the present article.
The manual by McDonald (1985, in the list of
references) is much more personal than the two
previous ones. It is highly critical of the traditional FA
approach, and reflects the author’s strong positions.
Highly recommended.
Finally, the following text by one of the present authors:
Ferrando, P.J. (1993) Introducción al análisis factorial
(Introduction to factor analysis). Barcelona: PPU.
This can be used as a more technical extension of the
basic aspects dealt with in the first sections.

- The EFA vs CFA problem in item analysis is discussed
extensively in:
Ferrando, P.J. and Lorenzo-Seva, U. (2000).
“Unrestricted versus restricted factor analysis of
multidimensional test items: some aspects of the
problem and some suggestions”, Psicológica, 21, 301-
323.

- The following thesis offers a comprehensive review of
the principal criteria and methods of rotation:
Lorenzo-Seva, U. (1997). Elaboración y evaluación de
métodos gráficos en análisis factorial (Development
and assessment of graphical methods in factor
analysis). Universidad de Barcelona.

- Finally, the step-by-step development of an FA by
means of a computer program is described in:
Ferrando, P.J. and Lorenzo, U. (1998)
Análisis factorial (Factor analysis).
In: Renom, J. (Coord.). Tratamiento informatizado de
datos (Computerized data processing). Chap. 5, pp.
101-126. Barcelona. Masson.

REFERENCES
Bartlett, M.S. (1950). Tests of significance in factor

analysis. British Journal of Mathematical and Statistical
Psychology, 3, 77-85.
Carroll, J.B. (1978). How shall we study individual

differences in cognitive abilities? Methodological and
theoretical perspectives. Intelligence, 2, 87-115.
Cattell, R.B. (1988). The meaning and strategic use of

factor analysis. In J.R. Nesselroade and R.B. Cattell (eds.)
Handbook of multivariate experimental psychology (pp.

FACTOR ANALYSIS AS A RESEARCH TECHNIQUE IN PSYCHOLOGY



S p e c i a l  S e c t i o n

33

131-203). New York: Plenum Press.
Comrey. A.L. (1962). The minimum residual method of

factor analysis. Psychological Reports, 11, 15-18.
Ferrando, P.J. (1993) Introducción al análisis factorial.

Barcelona: PPU.
Ferrando, P.J. & Lorenzo-Seva, U. (1998). Análisis

factorial [Factor analysis]. In: Renom, J. (Coord.)
Tratamiento informatizado de datos, Cap. 5
[Computerized data processing, Chap. 5] (pp. 101-126).
Barcelona: Masson.
Ferrando, P.J. & Lorenzo-Seva, U. (2000). Unrestricted

versus restricted factor analysis of multidimensional test
items: some aspects of the problem and some suggestions.
Psicológica, 21, 301-323.
Ferrando, P.J. (2002). Theoretical and empirical

comparisons between two models for continuous item
responses. Multivariate Behavioral Research, 37, 521-
542.
Harman, H.H. & Jones, W.H. (1966). Factor analysis by

minimizing residuals (minres). Psychometrika, 31, 351-
368.
Harman, H.H. (1976). Modern factor analysis.

Chicago: Univ. of Chicago press.
Hendrickson, A.E. & White, P.O. (1964). Promax: A

quick method for rotation to oblique simple structure.
British Journal of Statistical Psychology, 17, 65-70.
Horn, J.L. (1965). A rationale and test for the number of

factors in factor analysis. Psychometrika, 30, 179-185.
Jennrich, R. I. (1979). Admissible values of delta in

direct oblimin rotation. Psychometrika, 44, 173-177
Jöreskog, K.G. (1977). Factor analysis by least-squares

and maximum-likelihood methods. In: K. Enslein, A.
Ralston, & H.S. Wilf (Eds.): Statistical methods for digital
computers. (pp. 125-153). New York: Wiley.
Kaiser, H.F. (1970). A second generation little jiffy.

Psychometrika, 35, 401-415.
Kelley, T.L. (1935). Essential Traits of Mental Life.

Harvard Studies in Education, 26 (p. 146). Cambridge:
Harvard University press.
Lawley, D.N. & Maxwell, A.E. (1971). Factor analysis

as a statistical method. London: Butterworths.
Lorenzo-Seva, U. (1997). Elaboración y Evaluación de

Métodos Gráficos en Análisis Factorial [Development and
Assessment of Graphical Methods in Factor Analysis].
Doctoral dissertation. Universidad de Barcelona.
Lorenzo-Seva, U. (1999). Promin: A Method for Oblique

Factor Rotation. Multivariate Behavioral Research, 34,
347-365.

Lorenzo-Seva, U. & Ferrando P.J. (2006). FACTOR: A
computer program to fit the exploratory factor analysis
model. Behavior Reserch Methods, 38, 88-91.
MacCallum, R.C. & Tucker, L.R. (1991). Representing

sources of error in the common factor model: implications
for theory and practice. Psychological Bulletin, 109, 502-
511.
McCrae, R.R., Zonderman, A.B., Costa, P.T., Bond,

M.H. & Paunonen, S.V. (1996). Evaluating replicability of
factors in the revised NEO personality inventory:
confirmatory factor analysis versus Procustres rotation.
Journal of Personality and Social Psychology, 70, 552-
566.
McDonald, R.P. (1985). Factor analysis and related

methods. Hillsdale: LEA.
McDonald, R.P. and Ahlawat, K.S. (1974). Difficulty

factors in binary data. British Journal of Mathematical
and Statistical Psychology, 27, 82-99.
Mulaik, S.A. (1972). The foundations of factor analysis.

New York: McGraw-Hill.
Shapiro, A. & ten Berge, J.M.F. (2002). Statistical

inference of minimum rank factor analysis.
Psychometrika, 67, 79-94.
Spearman, Ch. (1904). General intelligence; objectively

determined and measured. American Journal of
Psychology, 115, 201292.
Steiger, J.H. & Lind, J. (1980). Statistically based tests

for the number of common factors. Paper presented at the
Annual Meeting of the Psychometric Society. Iowa City,
May 1980.
Tanaka, J.S. & Huba, G.J. (1985). A fit index for

covariance structure models under arbitrary GLS
estimation. British Journal of Mathematical and Statistical
Psychology, 38, 197-201.
Thurstone, L.L. (1947). Multiple factor analysis.

Chicago: University of Chicago press.
Tucker, L.R. & Lewis, C. (1973). The reliability coefficient

for maximum likelihood factor analysis. Psychometrika,
38, 1-10.
Velicer, W.F. (1976). Determining the number of

components from the matrix of partial correlations.
Psychometrika 41, 321–337.
Velicer, W.F. & Jackson, D.N. (1990). Component

analysis versus common factor analysis: Some further
observations. Multivariate Behavioral Research, 25, 97-
114.

PERE JOAN FERRANDO AND CRISTINA ANGUIANO-CARRASCO


