

Article

Quantity or Quality? Analysis of the Impact of Spanish Scientific Journals in Psychology. Beyond JCR

Pedro Altungy

Psicofundación, Spain
Universidad Europea de Madrid, Spain

ARTICLE INFO

Received: September 3, 2025

Accepted: September 23, 2025

Keywords

Impact index

JCR

Psychology

Scientific publications

Spain

ABSTRACT

Since its emergence in 1976, the JCR index—alongside other similar indices developed subsequently, such as the SJR—has become the standard criterion for assessing the impact and, indirectly, the quality of scientific journals. However, an increasing number of critics question the exclusive use of this metric as the sole means for assessing the impact and quality of scientific publications. Criticisms include the fact that it does not provide individualized information for each article, it does not take citation distributions into account, and that more citations do not always equal higher quality. The aim of the present article is to provide a critical analysis of the alternatives currently being proposed to assess the scope, impact, and quality of scientific publications on an individual basis, while also including criteria that are not only quantitative (metrics based on citation counts), but also qualitative (such as number of mentions on social media, in the press, or in legislation, etc.). As an illustrative example of this issue, the case of four psychology journals, grouped within the Psicofundación Publishing Group, is presented. This group is actively working towards the adoption of these new evaluation criteria in scientific publishing.

¿Cantidad o Calidad? Análisis del Impacto de las Revistas Científicas Españolas en Psicología. Más allá del JCR

RESUMEN

Palabras clave

Índices de impacto

JCR

Psicología

Publicaciones científicas

España

Desde su aparición en 1976, el índice JCR (y, de manera complementaria, otros índices similares que se han ido desarrollando — p.ej., el SJR) se ha convertido en el criterio estándar para valorar el impacto — e, indirectamente, la calidad — de las revistas científicas. No obstante, son cada vez más las voces que plantean diversas críticas al uso único de esta métrica como fuente única para valorar el impacto y calidad de las publicaciones científicas (no proporciona información individualizada de cada artículo, no tiene en cuenta las distribuciones de las citaciones, no siempre más citas equivale a mayor calidad...). El objetivo del presente trabajo es ofrecer un análisis crítico sobre las alternativas que se están proponiendo en la actualidad para valorar el alcance, impacto y calidad de las publicaciones científicas, de manera individualizada y que, además, incluya criterios no sólo cuantitativos (métricas basadas en número de citas), sino también cualitativos (p.ej., número de menciones en redes sociales, medios de comunicación, legislación...). A modo ilustrativo para ejemplificar esta cuestión, se ofrece el ejemplo de cuatro revistas de psicología, agrupadas dentro del Grupo Editorial Psicofundación, que impulsa en esta área precisamente el avanzar hacia estos nuevos criterios de valoración.

Introduction

The JCR Index as a Benchmark for Publication Quality

The publication in 1976 of the first Journal Citation Reports (JCR) revolutionized the world of publishing and the bibliometric analysis of scientific publications (McVeigh, 2018). The JCR was developed with the intention of providing an objective measure of the impact of journal citations, which would help librarians, publishers, and researchers evaluate the quality and impact of scientific publications (Clarivate, n.d.). This index emerged as an evolution of the Science Citation Index (SCI), which was first published in 1964, based on Eugene Garfield's novel idea of recording and linking the references that authors indicated in their scientific works, which would provide an "index of association of ideas" (Clarivate, n.d.).

The year 2025 marked the 50th anniversary of the JCR (Heaney, 2025), which currently has a total of 254 categories grouped into 21 subject areas in the sciences and social sciences (e.g., psychiatry/psychology, physics/mathematics, plant and animal sciences, and history and archaeology, among others), evaluating a total of 22,249 journals from 5,056 publishers (Clarivate, 2025). Within this annual report, journals can be included in three main indexes: the Emerging Sources Citation Index (ESCI), the Science Citation Index (SCI), and the Social Sciences Citation Index (SSCI). Currently, regardless of which index the journal is indexed in, the JCR report provides two key pieces of information (Clarivate, 2025):

- The Journal Impact Factor (JIF), which is calculated by dividing the number of citations that articles published in the previous two years have received in the last year by the total number of articles published in those two previous years. For example, for the 2024 JIF:

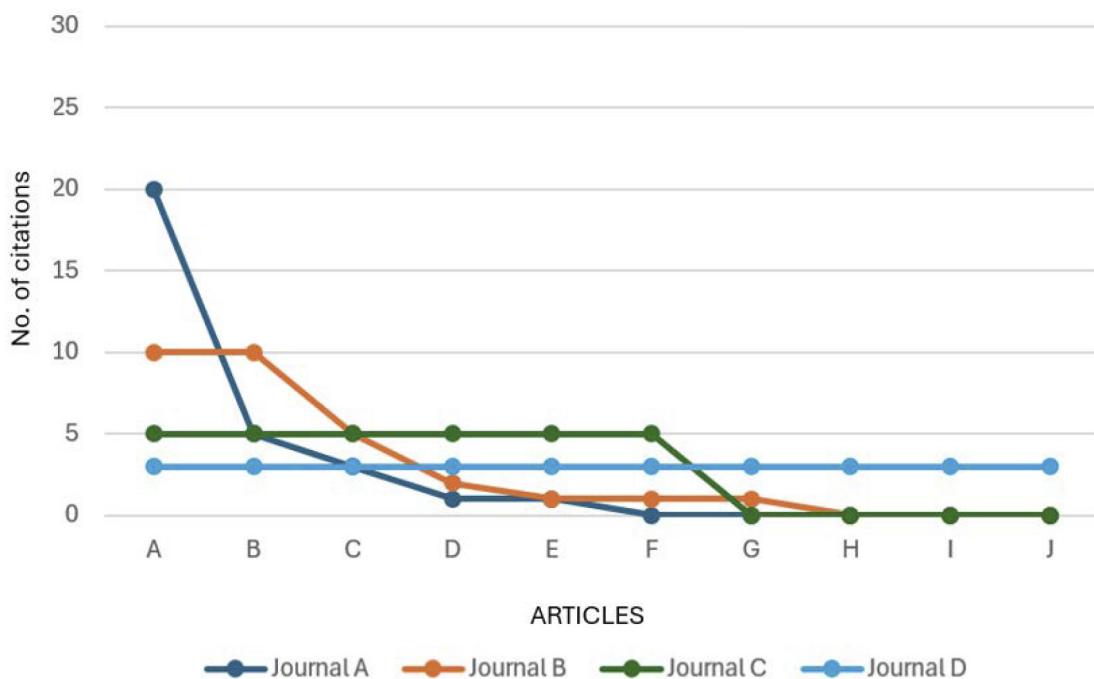
$$\frac{\text{Citations received in 2024 of works published in 2022+2023}}{\text{Total number of works published in 2022+2023}} = \text{JIF}$$

- The Journal Citation Indicator (JCI), which represents the average Category Normalized Citation Impact (CNCI) of citable items (articles and reviews) published by a journal in the last three years.

Of these two elements, the one that has become fundamental in recent decades—and one of the main factors driving many researchers' decisions about where to publish their work—is the JIF. It is based on this index that journals are classified in the well-known quartile system which, in practice, has become the blind reference framework for assessing whether or not a journal (and, by extension, the work published within it) is of scientific quality. This quartile system is calculated as follows:

- a) The JIF is calculated for each journal using the formula indicated above.
- b) Journals are grouped by category—for example, in the field of psychiatry/psychology, there are a total of 16 categories, encompassing 1,580 journals (Clarivate, 2025).

- c) Journals within the same category are ranked according to their JIF, divided into four quartiles—based on the 25th, 50th, and 75th percentiles—which results in the classification into Q1, Q2, Q3, and Q4.


Thus, when a researcher colloquially says that they have published their work in a "Q2" journal, this indicates that the journal has obtained a citation index relative to the total number of published works that falls within the 50-75 percentile (i.e., the journal is above the JIF of at least 50% of journals within its category, but below the top 25%). These indicators, obtained in an apparently aseptic and purely mathematical manner, may seem like the best option for providing an "objective," interdisciplinary, and international measure of a journal's scientific quality (Pérez-Hornero et al., 2013).

Consequently, for many years, most government agencies, institutions, and/or universities have used the JCR to "evaluate" the scientific quality of researchers' publications, citing purely quantitative criteria when making decisions that have an impact on important issues such as access to funding, contracts, or promotions (Mason & Singh, 2022). On the other hand, in Spanish universities (Gómez-Sancho & Mancebón-Torrubia, 2010)—as well as in other countries (Anderson et al., 2022)—it is common practice for evaluation committees assessing faculty positions to base the score awarded within the general evaluation criteria for the candidate's scientific output on the "number of Q1s they have," a situation that has attracted criticism in recent times (Docampo et al., 2022). Thus, in these cases, the quality of an author's publications is being evaluated through an index that is not related to the article itself, but rather to the journal. This indirect estimation of the scientific importance of a contribution is debatable and may be subject to biases involving both overvaluation and undervaluation.

Thus, despite some of the apparent advantages of this purely quantitative and mathematical system, substantial doubts and reservations about its infallibility have persisted internationally for years (Torres-Salinas et al., 2022; Yang & Zhang, 2013). Some of these criticisms highlight the limitations of this index, which is unable to distinguish different trends in citation distributions, leading in some cases to unfair evaluations (positive or negative) (Yang & Zhang, 2013). Let us take Figure 1 as an example. It graphically represents the distribution of the number of citations received by four journals that have each published 10 articles and have received a total of 30 citations in all cases. In this case, the four journals would have the same JIF or SJR index and, if they belonged to the same category, they would have the same position in a quartile. However, in the case of journal "A," 66.7% (20 out of 30) of its citations come from a single article, with five articles receiving no citations, while in the case of journal "D," all published articles contribute equally to the total number of citations the journal receives. This clearly illustrates the problem of assessing the quality of a journal based on an overall metric for all its publications, which does not discriminate individually between the contributions of each article. Furthermore, let us imagine an author who has published article "G" in journal "A." This person can indicate that their work has been published in a journal with a high impact factor (let us imagine the journals in the example in Figure 1,

Figure 1

Representation of Citation Distribution—Based on the Same Number of Articles and Total Citations

which are all in Q1), even though their work has not received any citations, which would undoubtedly be unfair, since the impact of their work would be placed on the same level as that of article "A" in the same journal, which has received 20 citations. This begins to make us realize the need to introduce new indicators and/or metrics at the individual level, an issue that will be discussed further below.

Other criticisms of this system focus on the fact that more citations do not necessarily indicate higher quality—a work may be cited many times because it is widely criticized—and there are reports that also point to a tendency to cite more works with clear methodological limitations and generic conclusions (Sample, 2021). In this sense, it sometimes happens that papers receive a high number of citations in a journal because they provide a framework that is required by the journal, which therefore, can only be understood as a necessary "toll" to be able to publish in it (e.g., a paper on ethical considerations in psychological research that includes the reference framework required by the journal for any empirical research to be published therein).

Not only that, but papers that have received hundreds—even thousands—of citations sometimes end up being retracted (Retraction Watch, 2025), which does not prevent them from continuing to be cited, thus giving rise to the paradox of what are known as *zombie articles* (Bucci, 2019). In addition, another important issue affecting JIF results has nothing to do with scientific matters: the marketing of journals (or publishing groups). As has happened in many other areas, the world of scientific publishing has undergone a process of consolidation in recent decades, becoming increasingly concentrated around a few large international publishers with significant financial resources (e.g., Elsevier, Springer, Taylor & Francis, and Wiley), which allows for better positioning of their publications, something particularly relevant in

the digital age (Marland, 2017). Scientific publications are undoubtedly a business (and a very profitable one—around ten billion dollars a year according to some estimates; Kim & Park, 2020), which, combined with the pressure to "publish or perish," creates an environment in which the number of publications continues to grow exponentially (Hanson et al., 2024). But does this mean that more and more high-quality science is being produced with a greater real social impact? Or is it perhaps a phenomenon with a greater economic than scientific impact? More and more researchers are pointing out how this growing number of publications seems to coexist with a certain crisis in science (Altbach & De Wit, 2018), especially with regard to the replication crisis (Oberauer & Lewandowsky, 2019)—in other words, a large increase in the number of publications without any substantive advancement in their contributions, a concern that has been noted for more than 30 years (Hamilton, 1990).

Thus, as can be seen, receiving more global citations for a single article does not necessarily mean higher quality. This has led, in recent years, to the increasing inclusion of quantitative criteria focused individually on articles, as well as qualitative criteria in the assessment of scientific quality, proposed as a way to (at least partially) alleviate doubts about a system purely based on global metrics at the journal level.

New Quantitative Indicators Focused on the Article

As noted, one of the main criticisms of the existing quantitative indicators, which focus on the impact of scientific journal publications taken as a whole, is that they do not account for the specific performance of the articles that comprise them. As a practical example, suppose that a journal published 30 articles

between 2022 and 2023. Of these, in 2024, 3 received 30 citations each, while the remaining 27 received no citations. According to the equation used to calculate the JIF (p.2), this journal would have an index of 3 (which, for most categories in psychology, would probably represent a Q1 quartile). With these "objective" and mathematical data in hand, this journal could well claim to be of high quality and impact, as demonstrated by its JIF index and its position in the first quartile. However, is this a realistic description when considering the background behind the data?

Recently, Scopus, through its SciVal tool, has begun to include in its system a new indicator that provides metrics regarding the normalized impact of published works, at the individual level, independent of journal metrics: the Field-Weighted Citation Impact (FWCI; Elsevier, 2024). This indicator represents the "ratio between the total citations actually received by the denominator and the total expected citations based on the average of its category, type, and year of publication" (Elsevier, 2024). Thus, an FWCI = 1 would indicate that the work has received the number of citations expected based on this global average. Values below 1 indicate the work was cited less than expected within its category, while values above 1 indicate it was more cited. In other words, the FWCI is a direct adaptation of the JIF at the article level, providing a more objective picture of the real impact (within the scientific production field) of a work compared to others in the same area. However, although more precise, this indicator still has the problem of equating impact/quality only with the number of citations received, overlooking other possible criteria.

An alternative source of information based on citation metrics at the individual level is provided by APIs such as PlumX, also belonging to Elsevier (n.d.) or Altmetric (n.d.). These tools provide article-level metrics, grouped into different categories, such as citations (extracted from indexing databases such as WoS, Scopus, PubMed, etc.), usage (reads and downloads), captures, mentions on websites, or mentions on social media. These are tools that journals can incorporate into their websites and which, through automated bots programmed to perform online *data mining*, obtain up-to-date information in these areas. The great advantage of these APIs is that, in addition to providing information on citations, they provide other additional indicators that allow for a more complete and comprehensive picture of the impact of each article—beyond the exclusive scope of scientific publication. This highlights the relevance—and necessity—of having new criteria beyond citations that allow for a more detailed understanding of the impact of scientific publications, based on more qualitative criteria.

The Inclusion of Qualitative Criteria in the Assessment of Scientific Quality

Let's take Spain as an example and look at the changes that have been taking place in recent years, mainly as a result of the new criteria that the Fundación Española para la Ciencia y Tecnología [Spanish Foundation for Science and Technology] (FECyT) and the Agencia Nacional de Evaluación de la Calidad y Acreditación [National Agency for Quality Assessment and Accreditation] (ANECA)—both dependent on the Ministry of Science and Innovation—are introducing in their various calls for proposals.

Since 2024, the FECyT has incorporated qualitative criteria into its calls for proposals for various initiatives to promote scientific culture and the dissemination of science, within specific proposal evaluation scales, which respond to issues more related to a narrative justification of the impact of the proposals, in conjunction with the traditional objective criteria (number of citations of the resulting scientific works, impact index of the journals where they are published, etc.) (FECyT, 2025a). Similarly, for several calls now, the FECyT, in another of its central pillars—the Sello de Calidad Editorial y Científica de las Revistas Académicas Españolas [Seal of Editorial and Scientific Quality of Spanish Academic Journals]—has also included different assessment criteria for obtaining this recognition that are based on qualitative issues (FECyT, 2025b).

For its part, in its 2023 edition, ANECA included qualitative criteria for the first time in the specific scales for evaluating applications for research or transfer periods (commonly known as *sexenios*), which allowed for a narrative assessment of the quality and impact of published works, in addition to purely quantitative criteria:

Secondly, the combination of qualitative methods and quantitative indicators used to assess the contributions submitted is being readjusted, once again to ensure the consistency of the assessment criteria used in the various evaluation procedures. This makes it advisable to integrate flexibly into this call the guidelines of the international movement to reform research assessment, which ANECA joined in 2023 by adhering to the San Francisco Declaration on Research Assessment (DORA) and the agreements and principles of the Coalition for Advancing Research Assessment (CoARA). In the various fields and subfields of evaluation, this takes the form, in accordance with the rules applicable to each scientific discipline, of a request for a narrative justification of the evidence of relevance and impact of each contribution, supported by the responsible use of quantitative indicators (ANECA, 2023, p. 166273).

In this same modification of the specific evaluation criteria, within the Appendix, the criteria to be followed for the justification of narrative bibliometrics are specified, which, according to the agency, "plays an instrumental role in the drafting, presentation, justification, and rigorous contextualization of evidence and indications related to the visibility, dissemination, and influence of scientific research results" (ANECA, 2023, p. 166289). In this section, within the taxonomy of recommended metrics, ANECA recognizes four types of metrics (three of which transcend the traditional criterion of "number of citations"): (1) citation metrics; (2) usage and readership metrics; (3) influence or social adoption metrics; (4) social visibility metrics.

Despite the progress being made in our country, driven by the Ministry of Science and Innovation, which seeks to adapt to current international standards, these changes do not yet seem to have been transferred with the same impetus to the sphere of public universities. Here, in the vast majority of cases, in the assessment criteria for the selection processes of professors in the different categories, within the section dedicated to the evaluation of scientific publications

derived from research activity, the specific criteria governing this evaluation remain opaque, to say the least (it is usually indicated that the number of publications will be taken into account, according to their relevance and quality in the field of knowledge—what are these criteria?). However, it seems that some universities are moving towards greater transparency in these criteria, following the path of the FECyT and ANECA. For example, the Autonomous University of Madrid (UAM) currently specifies in this regard that "quality indices such as the journal's quartile, the candidate's position in the list of authors, and the number of citations for each of the selected contributions will be evaluated" (UAM, 2025), which suggests the inclusion of qualitative aspects (candidate's position among the authors) within the evaluation criteria.

As briefly outlined above, the criticism and doubts that have been expressed in recent years about the appropriateness of basing the assessment of the quality of scientific publications solely on quantitative numerical values is leading to a slow but, hopefully, steady change that also includes qualitative aspects. In this sense, the idea would not be to ignore the quantitative, but rather to use it as a starting point to justify the impact and quality of publications argumentatively (qualitatively). In other words, quantitative metrics should be used not as the end of the argument (the more citations, the better the quality), but rather as a data-based foundation for an argument that must go beyond raw data, which, without context (without a narrative), gives a very biased and partial view of reality.

In this sense, what is the current state of Spanish scientific journals in the field of psychology? By way of illustration, we will present below an analysis of four psychology journals belonging to the Grupo Editorial Psicofundación (GEP), which will show, using data from 2024, the importance of addressing issues beyond the mere number of citations in order to consider the quality and impact of these publications.

Scientific Publications in Psychology in Spain — the Example of the GEP

The Psicofundación Publishing Group (GEP in Spanish) was founded in early 2023 with the aim of contributing to the development of quality publications in the field of psychology, in any format, in collaboration with Spanish scientific and professional organizations (INFOCOP, 2023). In a context marked by a clear trend towards the grouping (or, perhaps more accurately, absorption) of scientific journals into large publishing conglomerates, the independence of these journals often ends up being subordinated to the business interests of the large publishers that own them (Näre, 2022; Näre & Bendixsen, 2017). For this reason, the central objective of the GEP is to ensure that Spanish scientific journals in

psychology can maintain their independence, facilitating the editorial production of their work within a framework that is not oriented towards economic profit, but rather towards maintaining scientific quality and the transfer of knowledge to society.

In the two and a half years it has been in operation, the GEP has brought together the journals Psicothema, Revista Iberoamericana de Psicología y Salud (RIPS), Papeles del Psicólogo, Revista de Psicoterapia, Revista de Psicología y Educación (RPYE), Apuntes de Psicología, Informació Psicològica, and the Anuario Internacional de Revisiones en Psicología. Four of these journals are currently indexed in the SSCI or ESCI of the WoS and in the SJR, occupying the first to fourth quartiles. The remaining four are also indexed in prestigious international databases such as PsycInfo, SciELO, Redalyc, PubMed, and Medline. Above all, this reality confirms that, despite the challenges and limitations of scientific production in Spain, the tireless work of those who make up the editorial boards of the journals makes it possible for our country to be at the forefront in terms of the number of indexed scientific journals, occupying a more than commendable fifth place, only behind the United States, England, the Netherlands, and Germany (Clarivate, 2025).

Given that the objective of this paper is to show an analysis of the impact of scientific journals in psychology beyond purely quantitative indicators based on the impact index in the JCR or the SJR, we will proceed to show a comparison of the performance of four of the journals mentioned above. This comparison has a dual purpose: on the one hand, to show the importance of considering as many and as diverse sources as possible in order to obtain the most accurate quantitative picture of the impact of a work and, on the other hand, to generate a starting point for a narrative contextualization of the meaning of such data.

Comparing Impact According to Reference Criteria

The following data should be taken as a sample within a complex and extensive reality. Although partial due to the limited number of journals analyzed, we believe that the data shown are illustrative of what we intend to show: focusing solely on criteria such as citation numbers and quartile position is a reductionist, limited, and, it must be said, perhaps unfair view of the impact and relevance of scientific journals. Thus, for this analysis, data from the journals Psicothema, RIPS, Papeles del Psicólogo, and RPYE for 2024 will be used as a reference. Of these journals, the first three are indexed in the WoS in quartiles 1 (Psicothema and RIPS) and 3 (Papeles del Psicólogo). RPYE, which is not indexed in this database, has been included for additional comparison.

Table 1 shows a summary of the number of citations these journals obtained in the JCR2024 (Clarivate, 2025), along with

Table 1
Summary of Impact Indicators for the Selected Journals

Journal	Quartile in WoS	No. of citations JCR2024	Total number of citations (historical) JCR2024	No. of citations in alternative databases	No. of Mendeley reads	No. of citations in legislation	Mentions on social media
Psicothema	Q1	346	4,079	932	4,891	8	669
RIPS	Q1	55	188	129	787	4	4
Psychologist Papers	Q3	42	598	124	1,409	3	109
RPYE	-	-	-	30	823	3	1

other alternative metrics. As can be seen, at first glance, if only the criterion of "WoS indexing quartile" is taken into account, it would appear that journals such as *Papeles del Psicólogo* or RPYE (which is not indexed) are not journals of "high scientific quality" or that they do not have such a significant impact. However, this is a biased assessment if only the JIF is taken into account.

Position in Quartiles and in JCR - WoS

The first thing to note is the confusion that can arise between quartile position and number of citations. As shown in the introduction, the calculation of the JIF (which is the basis for quartile position) takes into account the number of citations in the previous two years with respect to the total number of papers published in those two years. Thus, it may happen (and, in fact, often does happen) that a journal with a lower total number of citations occupies a higher quartile than another with more citations (a higher total number of citations does not lead to a better quartile, as those citations must be divided by the number of articles published). That is why focusing solely on the total number of citations is, at the very least, a biased and partial view of the whole picture.

Alternative Citation Metrics

In a more detailed analysis of citations for the top three journals ([Table 1](#)), we see how the number of citations triples when data from alternative indexing databases to WoS (Scopus, PubMed, and Crossref) are taken as a reference. Furthermore, using RPYE as an example, if we rely on WoS data, this journal would apparently not be of sufficient "quality" (as it is not included in this database). However, as can be seen in [Table 1](#), RPYE obtained a total of 30 citations in 2024. It is true that these are modest figures when compared to the other three journals, but perhaps an all-or-nothing dichotomous view (a bias that we know in psychology to be as prevalent as it is misleading) simplifies a complex reality, detracting from the impact that many of these works achieve. In this sense, the proposal for qualitative assessment (where dimensionality would have a place) provides a more accurate picture of a reality that is always complex and full of nuances.

With this data, we do not intend to claim that journals are "better or worse" (since this is precisely the opposite of the central point of debate we are raising), but rather to highlight the relative significance of these figures, depending on what is considered. Thus, as can be observed, if only the number of citations these journals have received in the last two years according to the JCR is taken into account, their real impact will be significantly reduced. Not only that, but the WoS provides another important piece of data in its JCR: the total number of citations that the papers published in a journal (across its entire history) have received during the reference year of that JCR (fourth column of [Table 1](#)). For example, for the data provided in [Table 1](#), the values in this fourth column would indicate that all the papers published throughout the history of *Psicothema* were cited a total of 4,079 times in 2024 alone. This is a fact that is often ignored when assessing the impact and relevance of a journal, but are these values meaningless in terms of

its quality? Is it not important that papers published in a journal more than two years ago are still being cited today? In our opinion, we believe that this data clearly highlights the quality of what journals publish, since science is built on evidence accumulated in the past. The fact that "old" works continue to be cited only serves to affirm the current impact and relevance of what was published in the past. In this sense, it can be seen that the works from the GEP journals used as examples are considered foundational for current scientific production, which is also a relevant indicator of their impact (an additional indicator to the JIF/JCR and WoS quartile).

Individual Indicators. Impact Beyond Citations: Readings, Citations in Legislation, and Dissemination on Social Media

As indicated in the introduction, one of the main current criticisms of quality indicators based on citation metrics is that they provide information at the global level of journals, but not at the specific level of each work. The fact that a work is published in a journal with a high impact index does not guarantee that it will have the same impact or relevance. Therefore, greater attention needs to be paid to individualized metrics, independent of the journal where the work is published, which allow us to assess the impact it is having, both in terms of citations in scientific works and through other indicators.

Regarding the individual impact that a work has in terms of citations, as already mentioned, metrics such as the FWCI (Scopus-indexed journals) or PlumX are currently available. In the case of the GEP journals shown in this paper, all of them have PlumX on their websites, which allows anyone to consult the individualized impact of all the papers published in them, throughout their history. In addition, *Psicothema*, RIPS, and *Papeles del Psicólogo* are also indexed in Scopus, so the FWCI of all their works can be consulted. Taking the individualized data provided by PlumX as a reference, we will delve deeper into the impact of metrics other than citations on the articles in these journals.

Thus, first of all, a significant indicator of the interest and impact of a work is the number of times it is read/saved. The most widely used application in this regard is Mendeley (a citation manager belonging to Elsevier—again, an example of the trend toward consolidation of resources related to scientific publications into large corporate conglomerates). Thus, when a person with an account in this system reads/saves a work, it is recorded in their system (these being the metrics provided in [Table 1](#)). Therefore, the impact and relevance of articles published in a journal should be evaluated not only by the number of times they have been cited by other scientific works (an indicator that, as noted, is useful but not the only one) but also by the number of times they are consulted—a reference to knowledge transfer, both within the academic field and more broadly in general society.

In relation to this knowledge transfer, another point of reference is the impact that scientific publications have on the drafting and development of new legislation. This point is perhaps particularly relevant at the social level, since laws are the framework that defines the norms and rules of coexistence of any group, at different levels ([Vago & Barkan, 2021](#)). The fact that these laws take scientific works as a reference is highly significant, as it symbolizes how

scientific knowledge transcends the boundaries of the purely academic sphere (where, unfortunately, it often remains cloistered) and is transferred as a frame of reference for these common norms. This is an indicator that, until the aforementioned inclusion of narrative criteria by the FECyT (2025a, 2025b) and ANECA (2023), was completely overlooked in any assessment—when, in reality, it is one of the most tangible examples of impact and relevance. In this sense, the examples provided in Table 1 show how the selected scientific publications are also a reference in the legislative field.

Finally, it is worth mentioning the impact that works published in scientific journals can have on social media. In a digital world (Marland, 2017), social media has become one of the main sources of reference for millions of people around the world when searching for information (Aimeur et al., 2023). This is why paying attention to the impact that scientific publications have in this context becomes a fundamental issue if we want to have a holistic and more accurate view of their impact. The results in this regard from the works of the GEP journals used as examples perhaps perfectly reflect the current reality, where there is uneven development and presence in these new channels of dissemination. This shows how the transition from the academic sphere to a digital and social media environment is still a work in progress, but one that should be evaluated for its impact (although it is a correlative observation, it is significant that the journals with the highest number of mentions on social media are the ones that receive the most reads).

Discussion

The motivation for this paper was to use a brief historical review to show how the analysis of the impact of scientific journals has developed, more specifically in the field of psychology in Spain. Since its appearance in 1976, the use of the JCR as a reference framework for evaluating the quality and impact of scientific journals has become increasingly established, to the point where it is now the main general indicator at the international level (Anderson et al., 2022; Gómez-Sancho & Mancebón-Torrubia, 2010; Mason & Singh, 2022). Despite the advantages that this quantitative system has provided, its simplification of a complex reality has attracted increasing criticism in recent years (Sample, 2021; Torres-Salinas et al., 2022), which has ultimately led, in the case of Spain, to the introduction of qualitative criteria (alongside quantitative ones) for evaluating the impact and quality of scientific publications (ANECA, 2023; FECyT, 2025a, 2025b).

Thus, reducing the evaluation of the quality and impact of scientific publications to a single criterion, although tempting (and, to be honest, sometimes convenient) due to its simplicity and "objectivity," inevitably skews a complex reality. At this point, it is perhaps worth recalling what is attributed to one of the leading figures in early 20th-century psychology, Alfred Binet, on the subject of intelligence (although, in reality, this is a myth): "intelligence is what the intelligence test measures." Therefore, when we speak of quality and impact, let us not forget that this will always be a subjective reality (no matter how much we try to objectify it) defined by particular criteria—which, moreover, change over time. Undoubtedly, we need to operationalize our reality—it is inevitable for our world to function. However, let us

never forget that "that number," "that quartile," is a figure devoid of meaning in itself; it is we who provide that meaning; let us therefore try to be as fair (and conscious) as possible in doing so.

Furthermore, as has been shown throughout this work, we must be cautious in equating the impact and relevance of a scientific journal with that of each of the works published in it. There are many cases in which a small handful of articles within a journal have a high impact—both quantitatively in terms of citations and qualitatively in terms of additional indicators—and these are the flagship works that propel the journal as a whole to the top positions in the JIF, quartiles, SJR, and similar rankings. Conversely, there are numerous works that, individually, have a more than relevant impact, but whose significance is overshadowed by being published in journals in more modest positions.

Thus, the future of scientific publication assessment should be oriented toward a combination of individual criteria, specific to each article, together with global aspects of the journals where they are published. In this regard, the example of the GEP stands out as an example of this work to combine both criteria, providing information in its journals on its overall impact (JCR index, JIF, SJR) as well as on an individualized level for each of its works (number of individual citations, readings, mentions in legislation, mentions in social networks, etc.).

Finally, it is important to note that quantitative data—metrics based on citation values, readership, mentions in legislation or social media, etc.—should begin to be used, not as the final point indicating the quality of a work (or a journal when considered as a whole), but as a starting point to provide a qualitative narrative that contextualizes, with data-based evidence support, the reason for that quality.

Acknowledgments

I would like to thank Serafin Lemos and José Ramón Fernández-Hermida for their unconditional support in the preparation of this work and for all their teachings in the field of scientific publications. Their guidance and encouragement, together with their reflections, suggestions, and recommendations, have made it possible to write this paper, encouraging me by their example to always go beyond mere figures, to focus on their meaning, and to reflect on their background. Thanks also to the editors of the journals that are part of the GEP, for their commitment to scientific quality and their constant involvement in promoting debates that allow us to continue improving our understanding of *what constitutes science with impact and quality*. To all of them, thank you for always inspiring a critical look at our surroundings and for helping Spanish psychology remain at the international forefront.

Funding

The preparation of this work has not received any specific funding.

Conflict of Interest Statement

The author of this paper declare that there is no conflict of interest.

Data Availability Statement

The data used for this study come from sources that are openly available. Data regarding Web of Science JCR reports can be accessed through their website. For the remaining data, the information referenced here can be consulted through the PlumX API from the websites of the journals mentioned in this work.

References

- Agencia Nacional de Evaluación de Calidad y Acreditación [National Agency for Quality Assessment and Accreditation]. (2023, December 16). Resolución de 5 de diciembre de 2023, de la Comisión Nacional Evaluadora de la Actividad Investigadora, por la que se publican los criterios para la evaluación de la actividad investigadora [Resolution of December 5, 2023, of the National Commission for the Evaluation of Research Activity, publishing the criteria for the evaluation of research activity] (*BOE [Official State Bulletin, OSB]* no. 300, pp. 166272-166295) [Resolución] [Resolution]. Boletín Oficial del Estado [Official State Gazette]. <https://www.boe.es/boe/dias/2023/12/16/pdfs/BOE-A-2023-25537.pdf>
- Aïmeur, E., Amri, S., & Brassard, G. (2023). Fake news, disinformation and misinformation in social media: a review. *Social Network Analysis and Mining*, 13(1), 30. <https://doi.org/10.1007/s13278-023-01028-5>
- Altbach, P. G., & De Wit, H. (2018). Too much academic research is being published. *International Higher Education*, 96(2), 2-3. <http://doi.org/10.6017/ihe.2019.96.10767>
- Altmetric. (n.d.). *The Altmetrics details page*. Altmetric website. Retrieved September 10, 2025, from <https://www.altmetric.com/about-us/our-data/altmetric-details-page/>
- Anderson, C. G., McQuaid, R. W., & Wood, A. M. (2022). The effect of journal metrics on academic resume assessment. *Studies in Higher Education*, 47(11), 2310-2322. <https://doi.org/10.1080/03075079.2022.2061446>
- Bucci, E. M. (2019). On zombie papers. *Cell death & disease*, 10(3), 188-189. <https://doi.org/10.1038/s41419-019-1450-3>
- Clarivate. (2025). *Journal Citation Report*, 2025. Clarivate website. Retrieved August 28, 2025, from <https://jer.clarivate.com/jcr/home>
- Clarivate. (n.d.). *The history of ISI and the work of Eugene Garfield*. Clarivate website. Retrieved August 28, 2025, from <https://clarivate.com/academia-government/the-institute-for-scientific-information/history/>
- Docampo, D., Safón, V., & Albert, C. (2022). Research, teaching, and knowledge transfer assessment in Spain: Strategies and results. *Frontiers in Research Metrics and Analytics*, 7, 817031. <https://doi.org/10.3389/frma.2022.817031>
- Elsevier. (2024, 15 August). *What is Field-Weighted Citation Impact (FWCI)?* Elsevier website. Retrieved September 10, 2025, from https://service.elsevier.com/app/answers/detail/a_id/14894/supporthub/scopus/kw/FWCI/
- Elsevier. (n.d.). *PlumX Metrics*. Elsevier website. Retrieved September 10, 2025, <https://www.elsevier.com/insights/metrics/plumx>
- Fundación Española para la Ciencia y la Tecnología (FECyT) [Spanish Foundation for Science and Technology]. (2025a). *Convocatorias [Calls for proposals]*. Retrieved August 29, 2025, from <https://www.fecyt.es/convocatorias>
- Fundación Española para la Ciencia y la Tecnología (FECyT). [Spanish Foundation for Science and Technology] (2025b). *Novena edición de evaluación de la calidad editorial y científica de las revistas académicas españolas [Ninth edition of the evaluation of the editorial and scientific quality of Spanish academic journals]*. Retrieved August 29, 2025, from <https://evaluacionarce.fecyt.es/publico/Bases/Bases.aspx>
- Hamilton, D. P. (1990). Publishing by—And for?—The numbers: new evidence raises the possibility that a majority of scientific papers make negligible contributions to knowledge. *Science*, 250(4986), 1331-1332. <https://doi.org/10.1126/science.2255902>
- Hanson, M. A., Barreiro, P. G., Crosetto, P., & Brockington, D. (2024). The strain on scientific publishing. *Quantitative Science Studies*, 5(4), 823-843. https://doi.org/10.1162/qss_a_00327
- Heaney, K. (2025, 18 June). *Celebrating 50 years of Journal Citation Reports*. Clarivate. <https://clarivate.com/academia-government/blog/celebrating-50-years-of-journal-citation-reports/>
- INFOCOP. (2023, 27 April). Fernández Hermida: “Difundir la ciencia es una buena forma de defender la Psicología española” [“Spreading science is a good way to defend Spanish psychology.”]. Retrieved August 29, 2025, from <https://www.infcop.es/psicofundacion-crea-un-grupo-editorial/>
- Kim, S. J., & Park, K. S. (2020). Market share of the largest publishers in Journal Citation Reports based on journal price and article processing charge. *Science Editing*, 7(2), 149-155. <https://doi.org/10.6087/kcse.210>
- Gómez-Sancho, J., & Mancebón-Torrubia, M. (2010). A new approach to measuring scientific production in JCR journals and its application to Spanish public universities. *Scientometrics*, 85(1), 271-293. <https://doi.org/10.1007/s11192-010-0217-5>
- Marland, A. (2017). Journal publishing and marketing in an age of digital media, open access and impact factors. *Canadian Journal of Political Science/Revue canadienne de science politique*, 50(1), 77-95. <https://doi.org/10.1017/S0008423916001086>
- Mason, S., & Singh, L. (2022). When a journal is both at the ‘top’ and the ‘bottom’: The illogicality of conflating citation-based metrics with quality. *Scientometrics*, 127(6), 3683-3694. <https://doi.org/10.1007/s11192-022-04402-w>
- McVeigh, M. (2018, 23 May). *Learning from history: Understanding the origin of the JCR*. Clarivate. <https://clarivate.com/academia-government/blog/learning-history-understanding-origin-jer/>
- Näre, L. (2022). Is Open Science good for research and researchers? *Nordic Journal of Migration Research*, 12(1), 1-3. <https://doi.org/10.33134/njmr.553>
- Näre, L., & Bendixsen, S. (2017). Editorial. *Nordic Journal of Migration Research*, 7(1), 1-2. <https://doi.org/10.1515/njmr-2017-0009>
- Oberauer, K., & Lewandowsky, S. (2019). Addressing the theory crisis in psychology. *Psychonomic bulletin & review*, 26(5), 1596-1618. <https://doi.org/10.3758/s13423-019-01645-2>
- Pérez-Hornero, P., Arias-Nicolás, J. P., Pulgarín, A. A., & Pulgarín, A. (2013). An annual JCR impact factor calculation based on Bayesian credibility formulas. *Journal of Informetrics*, 7(1), 1-9. <https://doi.org/10.1016/j.joi.2012.08.004>
- Retraction Watch. (2025, 23 May). *Top 10 most highly cited retracted papers*. Retrieved August 28, 2025, from <https://retractionwatch.com/the-retraction-watch-leaderboard/top-10-most-highly-cited-retracted-papers/>

- Sample, I. (2021, 21 May). Research findings that are probably wrong cited far more than robust ones, study finds. *The Guardian*. <https://www.theguardian.com/science/2021/may/21/research-findings-that-are-probably-wrong-cited-far-more-than-robust-ones-study-finds>
- Torres-Salinas, D., Valderrama-Baca, P., & Arroyo-Machado, W. (2022). Is there a need for a new journal metric? Correlations between JCR Impact Factor metrics and the Journal Citation Indicator—JCI. *Journal of informetrics*, 16(3), 101315. <https://doi.org/10.1016/j.joi.2022.101315>
- Universidad Autónoma de Madrid [Autonomous University of Madrid] (UAM). (2025). *Acceso a plazas docentes [Access to teaching positions.]*. Retrieved August 29, 2025, from <https://www.uam.es/uam/pdi/acceso-plazas-docentes>
- Vago, S., & Barkan, S. E. (2021). *Law and society*. Routledge.
- Yang, Z. G., & Zhang, C. T. (2013). A proposal for a novel impact factor as an alternative to the JCR impact factor. *Scientific Reports*, 3(1), 3410. <https://doi.org/10.1038/srep03410>